• 【洛谷】P1962


    题目链接:https://www.luogu.org/problemnew/show/P1962

    题意:求fib数列的第n项,很大。mod 1e9+7.

    题解:BM直接推。

    代码:

      1 #include <cstdio>
      2 #include <cstring>
      3 #include <cmath>
      4 #include <algorithm>
      5 #include <vector>
      6 #include <string>
      7 #include <map>
      8 #include <set>
      9 #include <cassert>
     10 using namespace std;
     11 #define rep(i,a,n) for (int i=a;i<n;i++)
     12 #define per(i,a,n) for (int i=n-1;i>=a;i--)
     13 #define pb push_back
     14 #define mp make_pair
     15 #define all(x) (x).begin(),(x).end()
     16 #define fi first
     17 #define se second
     18 #define SZ(x) ((int)(x).size())
     19 typedef vector<int> VI;
     20 typedef long long ll;
     21 typedef pair<int, int> PII;
     22 const ll mod = 1000000007;
     23 ll powmod(ll a, ll b)
     24 {
     25     ll res = 1; a %= mod;
     26     assert(b >= 0); 
     27     for (; b; b >>= 1)
     28     {
     29         if (b & 1)
     30             res = res * a%mod;
     31         a = a * a%mod;
     32     }
     33     return res;
     34 }
     35 // head
     36 
     37 int _, n;
     38 namespace linear_seq 
     39 {
     40     const int N = 10010;
     41     ll res[N], base[N], _c[N], _md[N];
     42     vector<int> Md;
     43     void mul(ll *a, ll *b, int k) 
     44     {
     45         rep(i, 0, k + k) _c[i] = 0;
     46         rep(i, 0, k) 
     47             if (a[i]) 
     48                 rep(j, 0, k) 
     49                     _c[i + j] = (_c[i + j] + a[i] * b[j]) % mod;
     50         for (int i = k + k - 1; i >= k; i--) 
     51             if (_c[i])
     52                 rep(j, 0, SZ(Md)) 
     53                     _c[i - k + Md[j]] = (_c[i - k + Md[j]] - _c[i] * _md[Md[j]]) % mod;
     54         rep(i, 0, k) a[i] = _c[i];
     55     }
     56     int solve(ll n, VI a, VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
     57 //        printf("%d
    ",SZ(b));
     58         ll ans = 0, pnt = 0;
     59         int k = SZ(a);
     60         assert(SZ(a) == SZ(b));
     61         rep(i, 0, k) 
     62             _md[k - 1 - i] = -a[i]; _md[k] = 1;
     63         Md.clear();
     64         rep(i, 0, k) 
     65             if (_md[i] != 0) Md.push_back(i);
     66         rep(i, 0, k) 
     67             res[i] = base[i] = 0;
     68         res[0] = 1;
     69         while ((1ll << pnt) <= n) pnt++;
     70         for (int p = pnt; p >= 0; p--) 
     71         {
     72             mul(res, res, k);
     73             if ((n >> p) & 1) 
     74             {
     75                 for (int i = k - 1; i >= 0; i--) res[i + 1] = res[i]; res[0] = 0;
     76                 rep(j, 0, SZ(Md)) res[Md[j]] = (res[Md[j]] - res[k] * _md[Md[j]]) % mod;
     77             }
     78         }
     79         rep(i, 0, k) ans = (ans + res[i] * b[i]) % mod;
     80         if (ans < 0) ans += mod;
     81         return ans;
     82     }
     83     VI BM(VI s) 
     84     {
     85         VI C(1, 1), B(1, 1);
     86         int L = 0, m = 1, b = 1;
     87         rep(n, 0, SZ(s)) 
     88         {
     89             ll d = 0;
     90             rep(i, 0, L + 1) d = (d + (ll)C[i] * s[n - i]) % mod;
     91             if (d == 0) ++m;
     92             else if (2 * L <= n) 
     93             {
     94                 VI T = C;
     95                 ll c = mod - d * powmod(b, mod - 2) % mod;
     96                 while (SZ(C) < SZ(B) + m) C.pb(0);
     97                 rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod;
     98                 L = n + 1 - L; B = T; b = d; m = 1;
     99             }
    100             else 
    101             {
    102                 ll c = mod - d * powmod(b, mod - 2) % mod;
    103                 while (SZ(C) < SZ(B) + m) C.pb(0);
    104                 rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod;
    105                 ++m;
    106             }
    107         }
    108         return C;
    109     }
    110     int gao(VI a, ll n) 
    111     {
    112         VI c = BM(a);
    113         c.erase(c.begin());
    114         rep(i, 0, SZ(c)) c[i] = (mod - c[i]) % mod;
    115         return solve(n, c, VI(a.begin(), a.begin() + SZ(c)));
    116     }
    117 };
    118 
    119 int main() {
    120     long long n;      
    121     vector<int>v;
    122     v.push_back(1);
    123     v.push_back(1);
    124     v.push_back(2);
    125     v.push_back(3);
    126     v.push_back(5);
    127     v.push_back(8);
    128     v.push_back(13);
    129     v.push_back(21);
    130     v.push_back(34);
    131     while(~scanf("%lld",&n)){
    132         printf("%lld
    ", linear_seq::gao(v, n - 1));
    133         //VI{1,2,4,7,13,24}
    134         //printf("%lld
    ", linear_seq::gao(v, n - 1));
    135         //printf("%d
    ",linear_seq::gao(VI{x1,x2,x3,x4},n-1));
    136     }
    137 }
    View Code

    update:

    矩阵快速幂

    egin{pmatrix} 1 & 1\ 1 & 0 end{pmatrix}  *

     egin{pmatrix} f(n-1)\ f(n-2) end{pmatrix} =

    egin{pmatrix} f(n)\ f(n-1) end{pmatrix}

    代码:

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 using namespace std;
     5 #define ll long long
     6 const int maxn = 3;
     7 const ll mod = 1e9+7;
     8 
     9 ll n,p;
    10 
    11 //矩阵结构体 
    12 struct Matrix{
    13     ll a[maxn][maxn];
    14     void init(){    //初始化为单位矩阵 
    15         memset(a, 0, sizeof(a));
    16         for(int i = 1; i <= maxn;i++){
    17             a[i][i] = 1;
    18         }
    19     }
    20 };
    21 
    22 //矩阵乘法 
    23 Matrix mul(Matrix a, Matrix b){
    24     Matrix ans;
    25     for(int i = 1;i <= 2;++i){
    26         for(int j = 1;j <= 2;++j){
    27             ans.a[i][j] = 0;
    28             for(int k = 1;k <= 2;++k){
    29                 ans.a[i][j] = ans.a[i][j] % mod + a.a[i][k] * b.a[k][j] % mod;
    30             }
    31         }
    32     } 
    33     return ans;
    34 }
    35 
    36 //矩阵快速幂 
    37 Matrix qpow(Matrix a,ll b){
    38     Matrix ans;
    39     ans.init();
    40     while(b){
    41         if(b & 1)
    42             ans = mul(ans,a);
    43         a = mul(a,a);
    44         b >>= 1;
    45     }
    46     return ans;
    47 }
    48 
    49 void print(Matrix a){
    50     for(int i = 1; i <= n;++i){
    51         for(int j = 1;j <= n;++j){
    52             cout << a.a[i][j]%mod<< " ";
    53         }
    54         cout << endl;
    55     }
    56 }
    57 
    58 int main(){
    59     Matrix base;
    60     Matrix ans;
    61     ans.a[1][1] = 1;
    62     ans.a[1][2] = 0;
    63     base.a[1][1] = 1;
    64     base.a[1][2] = 1;
    65     base.a[2][1] = 1;
    66     base.a[2][2] = 0;
    67     cin>>n;
    68     ans = mul(ans,qpow(base,n-1));
    69     cout<<ans.a[1][1]<<endl;
    70     return 0;
    71 }
    View Code

     

  • 相关阅读:
    maven
    Web开发入门
    网络编程之Socket
    自定义注解与设计模式
    数据交换格式与SpringIOC底层实现
    caffe笔记之例程学习(二)
    caffe笔记之例程学习
    ubuntu14.04 caffe环境配置
    Pattern Recognition (Fourth Edition)读书笔记之mvnrnd函数
    MIF文件编写小技巧
  • 原文地址:https://www.cnblogs.com/Asumi/p/9671474.html
Copyright © 2020-2023  润新知