题目:
A string is finite sequence of characters over a non-empty finite set Σ.
In this problem, Σ is the set of lowercase letters.
Substring, also called factor, is a consecutive sequence of characters occurrences at least once in a string.
Now your task is simple, for two given strings, find the length of the longest common substring of them.
Here common substring means a substring of two or more strings.
Input
The input contains exactly two lines, each line consists of no more than 250000 lowercase letters, representing a string.
Output
The length of the longest common substring. If such string doesn't exist, print "0" instead.
Example
Input: alsdfkjfjkdsal fdjskalajfkdsla Output: 3
Notice: new testcases added
题解:
注:参照神犇hahalidaxin的题解.
SAM+DP
先拿个串建个SAM,然后用后面的串匹配,每次将所有的匹配长度记录在状态上取min,然后对所有状态取max即答案。
需要更新fa,因为fa[p]一定比p更优,但匹配的时候可能只更新了p而没有更新fa[p],所以还需要递推一边。
注意mn[p]初始化为l[p]
心得:
目前没什么好说的··dp和sam都不熟的情况下想做这道题真的很懵b····感觉没什么收获··以后再来看看吧···
代码:
#include<iostream> #include<cstdio> #include<cstdlib> #include<cmath> #include<ctime> #include<cctype> #include<cstring> #include<string> #include<algorithm> using namespace std; const int N=250005; int pre[N],son[N][26],step[N],last=1,root=1,tot=1,minn[N],maxx[N]; int cnt[N],len,b[N]; char s[N]; struct suffix_auto { void extend(int ch) { int p=last,np=++tot; minn[tot]=step[tot]=step[last]+1; for(;p&&!son[p][ch];p=pre[p]) son[p][ch]=np; if(!p) pre[np]=root; else { int q=son[p][ch]; if(step[q]!=step[p]+1) { int nq=++tot; minn[nq]=step[nq]=step[p]+1; memcpy(son[nq],son[q],sizeof(son[q])); pre[nq]=pre[q]; pre[q]=pre[np]=nq; for(;son[p][ch]==q;p=pre[p]) son[p][ch]=nq; } else pre[np]=q; } last=np; } void build() { scanf("%s",s); len=strlen(s); for(int i=0;i<len;i++) extend(s[i]-'a'); } }automa; int main() { freopen("a.in","r",stdin); automa.build(); for(int i=1;i<=tot;i++) cnt[step[i]]++; for(int i=1;i<=len;i++) cnt[i]+=cnt[i-1]; for(int i=1;i<=tot;i++) b[cnt[step[i]]--]=i; while(scanf("%s",s)==1) { int len1=strlen(s); int p=root,len=0; for(int i=0;i<len1;i++) { int ch=s[i]-'a'; if(son[p][ch]) len++,p=son[p][ch]; else { while(p&&!son[p][ch]) p=pre[p]; if(!p) len=0,p=root; else { len=step[p]+1; p=son[p][ch]; } } if(maxx[p]<len) maxx[p]=len; } for(int i=tot;i;i--) { int j=b[i]; if(maxx[j]<minn[j]) minn[j]=maxx[j]; if(pre[p]&&maxx[pre[j]]<maxx[j]) maxx[pre[j]]=maxx[j]; maxx[j]=0; } } int ans=0; for(int i=1;i<=tot;i++) ans=max(ans,minn[i]); cout<<ans<<endl; return 0; }