• Mapreduce实例——二次排序


    在电商网站中,用户进入页面浏览商品时会产生访问日志,记录用户对商品的访问情况,现有goods_visit2表,包含(goods_id,click_num)两个字段,数据内容如下:

    goods_id    click_num
    1010037    100
    1010102    100
    1010152    97
    1010178    96
    1010280    104
    1010320    103
    1010510    104
    1010603    96
    1010637    97
    goods_visit2

    编写MapReduce代码,功能为根据商品的点击次数(click_num)进行降序排序,再根据goods_id升序排序,并输出所有商品:

    package mapreduce8;
    
    import java.io.DataInput;
    import java.io.DataOutput;
    import java.io.IOException;
    import java.util.StringTokenizer;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.io.WritableComparable;
    import org.apache.hadoop.io.WritableComparator;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Partitioner;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
    
    //07.Mapreduce实例——二次排序
    public class SecondarySort {
        public static class IntPair implements WritableComparable<IntPair> {
            int first;
            int second;
    
            public void set(int left, int right) {
                first = left;
                second = right;
            }
            public int getFirst() {
                return first;
            }
            public int getSecond() {
                return second;
            }
            @Override
    
            public void readFields(DataInput in) throws IOException {
                // TODO Auto-generated method stub
                first = in.readInt();
                second = in.readInt();
            }
            @Override
    
            public void write(DataOutput out) throws IOException {
                // TODO Auto-generated method stub
                out.writeInt(first);
                out.writeInt(second);
            }
            @Override
    
            public int compareTo(IntPair o) {
                // TODO Auto-generated method stub
                if (first != o.first) {
                    return first < o.first ? 1 : -1;
                }
                else if (second != o.second) {
                    return second < o.second ? -1 : 1;
                }
                else {
                    return 0;
                }
            }
            @Override
            public int hashCode() {
                return first * 157 + second;
            }
            @Override
            public boolean equals(Object right) {
                if (right == null)
                    return false;
                if (this == right)
                    return true;
                if (right instanceof IntPair) {
                    IntPair r = (IntPair) right;
                    return r.first == first && r.second == second;
                }
                else {
                    return false;
                }
            }
        }
    
        public static class FirstPartitioner extends Partitioner<IntPair, IntWritable> {
            @Override
            public int getPartition(IntPair key, IntWritable value,int numPartitions) {
                return Math.abs(key.getFirst() * 127) % numPartitions;
            }
        }
        public static class GroupingComparator extends WritableComparator {
            protected GroupingComparator() {
                super(IntPair.class, true);
            }
            @Override
            //Compare two WritableComparables.
            public int compare(WritableComparable w1, WritableComparable w2) {
                IntPair ip1 = (IntPair) w1;
                IntPair ip2 = (IntPair) w2;
                int l = ip1.getFirst();
                int r = ip2.getFirst();
                return l == r ? 0 : (l < r ? -1 : 1);
            }
        }
        public static class Map extends Mapper<LongWritable, Text, IntPair, IntWritable> {
            private final IntPair intkey = new IntPair();
            private final IntWritable intvalue = new IntWritable();
            public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
                String line = value.toString();
                StringTokenizer tokenizer = new StringTokenizer(line);
                int left = 0;
                int right = 0;
                if (tokenizer.hasMoreTokens()) {
                    left = Integer.parseInt(tokenizer.nextToken());
                    if (tokenizer.hasMoreTokens())
                        right = Integer.parseInt(tokenizer.nextToken());
                    intkey.set(right, left);
                    intvalue.set(left);
                    context.write(intkey, intvalue);
                }
            }
        }
    
        public static class Reduce extends Reducer<IntPair, IntWritable, Text, IntWritable> {
            private final Text left = new Text();
            private static final Text SEPARATOR = new Text("------------------------------------------------");
    
            public void reduce(IntPair key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {
                context.write(SEPARATOR, null);
                left.set(Integer.toString(key.getFirst()));
                System.out.println(left);
                for (IntWritable val : values) {
                    context.write(left, val);
                    //System.out.println(val);
                }
            }
        }
        public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
    
            Configuration conf = new Configuration();
            Job job = new Job(conf, "secondarysort");
            job.setJarByClass(SecondarySort.class);
            job.setMapperClass(Map.class);
            job.setReducerClass(Reduce.class);
            job.setPartitionerClass(FirstPartitioner.class);
    
            job.setGroupingComparatorClass(GroupingComparator.class);
            job.setMapOutputKeyClass(IntPair.class);
    
            job.setMapOutputValueClass(IntWritable.class);
    
            job.setOutputKeyClass(Text.class);
    
            job.setOutputValueClass(IntWritable.class);
    
            job.setInputFormatClass(TextInputFormat.class);
    
            job.setOutputFormatClass(TextOutputFormat.class);
            String[] otherArgs=new String[2];
            otherArgs[0]="hdfs://192.168.51.100:8020/mymapreduce8/in/goods_visit2";
            otherArgs[1]="hdfs://192.168.51.100:8020/mymapreduce8/out";
    
            FileInputFormat.setInputPaths(job, new Path(otherArgs[0]));
    
            FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
    
            System.exit(job.waitForCompletion(true) ? 0 : 1);
        }
    }

    结果:

    原理:

    在Map阶段,使用job.setInputFormatClass定义的InputFormat将输入的数据集分割成小数据块splites,同时InputFormat提供一个RecordReder的实现。本实验中使用的是TextInputFormat,他提供的RecordReder会将文本的字节偏移量作为key,这一行的文本作为value。这就是自定义Map的输入是<LongWritable, Text>的原因。然后调用自定义Map的map方法,将一个个<LongWritable, Text>键值对输入给Map的map方法。注意输出应该符合自定义Map中定义的输出<IntPair, IntWritable>。最终是生成一个List<IntPair, IntWritable>。在map阶段的最后,会先调用job.setPartitionerClass对这个List进行分区,每个分区映射到一个reducer。每个分区内又调用job.setSortComparatorClass设置的key比较函数类排序。可以看到,这本身就是一个二次排序。 如果没有通过job.setSortComparatorClass设置key比较函数类,则可以使用key实现的compareTo方法进行排序。 在本实验中,就使用了IntPair实现的compareTo方法。

    在Reduce阶段,reducer接收到所有映射到这个reducer的map输出后,也是会调用job.setSortComparatorClass设置的key比较函数类对所有数据对排序。然后开始构造一个key对应的value迭代器。这时就要用到分组,使用job.setGroupingComparatorClass设置的分组函数类。只要这个比较器比较的两个key相同,他们就属于同一个组,它们的value放在一个value迭代器,而这个迭代器的key使用属于同一个组的所有key的第一个key。最后就是进入Reducer的reduce方法,reduce方法的输入是所有的(key和它的value迭代器)。同样注意输入与输出的类型必须与自定义的Reducer中声明的一致。

  • 相关阅读:
    postman Variables变量的详解与应用
    windows 快速设置环境变量工具 Rapid Environment Editor
    Redis 客户端工具
    python 安装 pymongo
    python ImportError:No module named 'PIL'
    linux 通过命令行终端去控制vnc终端【export DISPLAY使用方法】
    centos7 安装vnc-server 与卸载
    vagrant box centos7硬盘扩容【不删除原数据】
    vboxmanage不是内部或外部命令
    用docker搭建的nginx报upstream错误
  • 原文地址:https://www.cnblogs.com/Arisf/p/15576791.html
Copyright © 2020-2023  润新知