import tensorflow as tf
import numpy as np
### 定义添加神经网络层函数 START ###
def add_layer(inputs,in_size,out_size,activation_function=None):
"""描述: 添加神经网络层函数.
:param inputs: 输入神经层
:param in_size: 输入神经层的神经元个数
:param out_size: 输出神经层的神经元个数
:param activation_function: 激励函数
"""
# 定义一个"in_size行,out_size列"的随机矩阵变量
Weights=tf.Variable(tf.random_normal([in_size,out_size]))
# 定义一个"1行,out_size列"的0值矩阵基准变量
biases=tf.Variable(tf.zeros([1,out_size])+0.1)
# 定义一个矩阵乘法函数公式
Wx_plus_b = tf.matmul(inputs,Weights)+biases
# 判断是否使用激励函数
if activation_function is None:
outputs=Wx_plus_b
else:
outputs=activation_function(Wx_plus_b)
return outputs
### 定义添加神经网络层函数 END ###
### 定义变量结构 START###
# 定义起始输入:在指定的-1到1的间隔内返回300个均匀间隔的1行300列的数组,再将数组转化为1列300行的矩阵
# 例如:
# x1 = np.array([1, 2, 3, 4, 5])
# # the shape of x1 is (5,)
# x1_new = x1[:, np.newaxis]
# # now, the shape of x1_new is (5, 1)
# array([[1],
# [2],
# [3],
# [4],
# [5]])
# x1_new = x1[np.newaxis,:]
# # now, the shape of x1_new is (1, 5)
# array([[1, 2, 3, 4, 5]])
x_data=np.linspace(-1,1,300)[:,np.newaxis]
# 定义噪点 :使用高斯分布的概率密度函数定义一个均值为0,标准差为0.05的高斯随机数,个数为x_data的矩阵元素数
noise =np.random.normal(0,0.05,x_data.shape)
# 定义起始输出:x_data的平方减去0.5,再加上噪点
y_data=np.square(x_data)-0.5+noise
# 定义运行时参数变量
xs=tf.placeholder(tf.float32,[None,1])
ys=tf.placeholder(tf.float32,[None,1])
### 定义神经网络结构 START###
# 定义隐藏层神经网络层layer01
layer01=add_layer(xs,1,10,activation_function=tf.nn.relu)
# 定义隐藏层神经网络层layer02
layer02=add_layer(layer01,10,10,activation_function=tf.nn.sigmoid)
# 定义预测输出层 prediction
prediction =add_layer(layer02,10,1,activation_function=None)
# 计算损失
# 1.计算起始输出与预测输出的偏差的平方
loss_square=tf.square(y_data - prediction)
# 2.计算一个张量的各个维度上元素的总和.
reduce_sum_square=tf.reduce_sum(loss_square,reduction_indices=[1])
# 3.计算损失:张量的各个维度上的元素的平均值
loss=tf.reduce_mean(reduce_sum_square)
#使用梯度下降算法训练所有样本
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
# 定义初始化变量
init=tf.initialize_all_variables()
# 创建会话
sess=tf.Session()
# 运行初始化变量指针
sess.run(init)
### 定义神经网络结构 END###
###定义变量结构 END###
for i in range(2000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50==0:
print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))