• HDU 4686(矩阵快速幂)


    题目链接:HDU4686
    Arc of Dream

    Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)
    Total Submission(s): 5059 Accepted Submission(s): 1584

    Problem Description
    An Arc of Dream is a curve defined by following function:

    where
    a0 = A0
    ai = ai-1*AX+AY
    b0 = B0
    bi = bi-1*BX+BY
    What is the value of AoD(N) modulo 1,000,000,007?

    Input
    There are multiple test cases. Process to the End of File.
    Each test case contains 7 nonnegative integers as follows:
    N
    A0 AX AY
    B0 BX BY
    N is no more than 1018, and all the other integers are no more than 2×109.

    Output
    For each test case, output AoD(N) modulo 1,000,000,007.

    Sample Input
    1
    1 2 3
    4 5 6
    2
    1 2 3
    4 5 6
    3
    1 2 3
    4 5 6

    Sample Output
    4
    134
    1902

    Author
    Zejun Wu (watashi)

    Source
    2013 Multi-University Training Contest 9
    分析:ai*bi=(ai-1 *ax+ay)(bi-1 *bx+by)
    =(ai-1 * bi-1 ax*bx)+(ai-1 *ax*by)+(bi-1 *bx*ay)+(ay*by)

    p=ax*bx, q=ax*by, r=ay*bx, s=ay*by

    所以ai*bi=p(ai-1 bi-1)+q(ai-1)+r(bi-1)+s*

    虽然可以用递推来求出每一项,但是n太大了,直接求绝对会超时的。

    f(n)=an*bn, a(n)=an, b(n)=bn

    s(n)=sum(ai*bi),i=0,1,…n

    f(i)=p*f(i-1)+q*a(i-1)+r*b(i-1)+s

    这是一个递推式,对于任何一个递推式,我们都可以用矩阵法来优化,加快速度求出第n项或前n项和。

    我们可以构造一个5*5的矩阵A,使得

    *【f(n-1),a(n-1),b(n-1),1,s(n-2)】*A=【f(n),a(n),b(n),1,s(n-1)】
    =【p*f(n-1)+q*a(n-1)+r*b(n-1)+s, a(n-1)ax+ay, b(n-1)*bx+by, 1, s(n-2)+f(n-1)】

    所以我们容易得出矩阵A:

    axbx 0 0 0 1
    axby ax 0 0 0
    aybx 0 bx 0 0
    ayay ay by 1 0
    0 0 0 0 1

    【f(1), a(1) ,b(1), 1, s(0)】*A = 【f(2), a(2), b(2), 1, s(1)】

    以此类推得,【f(1), a(1) ,b(1), 1, s(0)】*A^(n-1) = 【f(n), a(n), b(n), 1, s(n-1)】

    这样就可以快速的求出s(n-1)了,

    其中f(1)=a1*b1, a(1)=a0*ax+ay,

    b(1)=b0*bx+by, s(0)=a0*b0

    接下来就是矩阵快速幂了。

    注意:n==0时,直接输出0,不然会死循环TLE的,还有就是要用long long,也要记得mod

    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #include<cstdio>
    #include<cstdlib>
    #include<queue>
    #include<map>
    #include<set>
    #include<stack>
    #include<bitset>
    #include<numeric>
    #include<vector>
    #include<string>
    #include<iterator>
    #include<cstring>
    #include<ctime>
    #include<functional>
    #define INF 0x3f3f3f3f
    #define ms(a,b) memset(a,b,sizeof(a))
    #define pi 3.14159265358979
    #define mod 1000000007
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    using namespace std;
    
    typedef pair<int, int> P;
    typedef long long ll;
    typedef unsigned long long ull;
    const int maxn = 50;
    
    struct Matrix {
        ll a[6][6];
    }ori, A, temp, res, ans;
    
    int n;
    
    Matrix mul(Matrix x, Matrix y)
    {
        ms(temp.a, 0);
        for (int i = 1; i <= n; i++)
        {
            for (int j = 1; j <= n; j++)
            {
                ll sum = 0;
                for (int k = 1; k <= n; k++)
                {
                    sum = (sum + x.a[i][k] * y.a[k][j] % mod) % mod;
                }
                temp.a[i][j] = sum;
            }
        }
        return temp;
    }
    
    void quickpow(ll k)
    {
        ms(res.a, 0);
        for (int i = 1; i <= n; i++) res.a[i][i] = 1;
        while (k)
        {
            if (k & 1) res = mul(res, A);
            A = mul(A, A);
            k >>= 1;
        }
    }
    
    int main()
    {
        ll N, a0, ax, ay, b0, bx, by;
        while (~scanf("%lld %lld %lld %lld %lld %lld %lld", &N, &a0, &ax, &ay, &b0, &bx, &by))
        {
            if (!N)
            {
                puts("0");
                continue;
            }
            ll a1 = (a0*ax%mod + ay) % mod, b1 = (b0*bx%mod + by) % mod, f1 = (a1*b1) % mod, s0 = (a0*b0) % mod;
            n = 5;
            ms(ori.a, 0);
            ori.a[1][1] = f1;
            ori.a[1][2] = a1;
            ori.a[1][3] = b1;
            ori.a[1][4] = 1;
            ori.a[1][5] = s0;
            memset(A.a, 0, sizeof(A.a));
            A.a[1][1] = (ax*bx) % mod;
            A.a[1][5] = 1;
            A.a[2][1] = (ax*by) % mod;
            A.a[2][2] = ax%mod;
            A.a[3][1] = (ay*bx) % mod;
            A.a[3][3] = bx%mod;
            A.a[4][1] = (ay*by) % mod;
            A.a[4][2] = ay%mod;
            A.a[4][3] = by%mod;
            A.a[4][4] = 1;
            A.a[5][5] = 1;
            quickpow(N - 1);
            ans = mul(ori, res);
            printf("%lld
    ", ans.a[1][5]);
        }
        return 0;
    }
    
    
    Fighting~
  • 相关阅读:
    SQL2000中创建作业(定时查询,更新)(转)
    Windows下如何安装MongoDB
    开发高性能的MongoDB应用—浅谈MongoDB性能优化(转)
    大数据时代的数据存储,非关系型数据库MongoDB(一)(转)
    Memcached在Windows下的配置和使用(转)
    mysql中去重 distinct 用法
    k8s install
    3.Docker与LXC、虚拟化技术的区别——虚拟化技术本质上是在模拟硬件,Docker底层是LXC,本质都是cgroups是在直接操作硬件
    2.LXC和namespace介绍
    python类中两个列表实例如何相加或相减
  • 原文地址:https://www.cnblogs.com/Archger/p/12774796.html
Copyright © 2020-2023  润新知