Easy Summation
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 965 Accepted Submission(s): 389
Problem Description
You are encountered with a traditional problem concerning the sums of powers.
Given two integers n and k. Let f(i)=ik, please evaluate the sum f(1)+f(2)+...+f(n). The problem is simple as it looks, apart from the value of n in this question is quite large.
Can you figure the answer out? Since the answer may be too large, please output the answer modulo 109+7.
Given two integers n and k. Let f(i)=ik, please evaluate the sum f(1)+f(2)+...+f(n). The problem is simple as it looks, apart from the value of n in this question is quite large.
Can you figure the answer out? Since the answer may be too large, please output the answer modulo 109+7.
Input
The first line of the input contains an integer T(1≤T≤20),
denoting the number of test cases.
Each of the following T lines contains two integers n(1≤n≤10000) and k(0≤k≤5).
Each of the following T lines contains two integers n(1≤n≤10000) and k(0≤k≤5).
Output
For each test case, print a single line containing an integer modulo 109+7.
Sample Input
3
2 5
4 2
4 1
Sample Output
33
30
10
Source
注意:
fast_pow(ll p, ll n)中p可能爆int需写成long long
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<queue>
#include<map>
#include<set>
#include<stack>
#include<bitset>
#include<numeric>
#include<vector>
#include<string>
#include<iterator>
#include<cstring>
#include<ctime>
#include<functional>
#define INF 0x3f3f3f3f
#define ms(a,b) memset(a,b,sizeof(a))
#define pi 3.14159265358979
#define mod 1000000007
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
typedef pair<int, int> P;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 55;
ll fast_pow(ll p, ll n)
{
ll ans = 1;
while (n)
{
if (n & 1) ans = (ans*p) % mod;
p = (p*p) % mod;
n >>= 1;
}
return ans;
}
int main()
{
int t;
scanf("%d", &t);
while (t--)
{
ll n, k, as = 0;
scanf("%lld%lld", &n, &k);
for (int i = 1; i <= n; i++)
{
as = (as + fast_pow(i, k)) % mod;
}
printf("%lld
", as);
}
}