• ZOJ 3827 Information Entropy【水题、简单相加】


    Information Entropy

    Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge

    Information Theory is one of the most popular courses in Marjar University. In this course, there is an important chapter about information entropy.

    Entropy is the average amount of information contained in each message received. Here, a message stands for an event, or a sample or a character drawn from a distribution or a data stream. Entropy thus characterizes our uncertainty about our source of information. The source is also characterized by the probability distribution of the samples drawn from it. The idea here is that the less likely an event is, the more information it provides when it occurs.

    Generally, "entropy" stands for "disorder" or uncertainty. The entropy we talk about here was introduced by Claude E. Shannon in his 1948 paper "A Mathematical Theory of Communication". We also call it Shannon entropy or information entropy to distinguish from other occurrences of the term, which appears in various parts of physics in different forms.

    Named after Boltzmann's H-theorem, Shannon defined the entropy Η (Greek letter Η, η) of a discrete random variable X with possible values {x1, x2, ..., xn} and probability mass function P(X) as:

    H(X)=E(ln(P(x)))

    Here E is the expected value operator. When taken from a finite sample, the entropy can explicitly be written as

    H(X)=i=1nP(xi)log b(P(xi))

    Where b is the base of the logarithm used. Common values of b are 2, Euler's number e, and 10. The unit of entropy is bit for b = 2, nat for b = e, and dit (or digit) for b = 10 respectively.

    In the case of P(xi) = 0 for some i, the value of the corresponding summand 0 logb(0) is taken to be a well-known limit:

    0log b(0)=limp0+plog b(p)

    Your task is to calculate the entropy of a finite sample with N values.

    Input

    There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

    The first line contains an integer N (1 <= N <= 100) and a string S. The string S is one of "bit", "nat" or "dit", indicating the unit of entropy.

    In the next line, there are N non-negative integers P1P2, .., PNPi means the probability of the i-th value in percentage and the sum of Pi will be 100.

    Output

    For each test case, output the entropy in the corresponding unit.

    Any solution with a relative or absolute error of at most 10-8 will be accepted.

    Sample Input

    3
    3 bit
    25 25 50
    7 nat
    1 2 4 8 16 32 37
    10 dit
    10 10 10 10 10 10 10 10 10 10
    

    Sample Output

    1.500000000000
    1.480810832465
    1.000000000000
    
    
    注意:Pi ==0时特判(不计入概率)。
    
    
    #include<iostream>	
    #include<algorithm>
    #include<cmath>
    #include<cstdio>
    #include<cstdlib>
    #include<queue>
    #include<map>
    #include<set>
    #include<stack>
    #include<bitset>
    #include<numeric>
    #include<vector>
    #include<string>
    #include<iterator>
    #include<cstring>
    #include<functional>
    #define INF 0x3f3f3f3f
    #define ms(a,b) memset(a,b,sizeof(a))
    using namespace std;
    
    const int maxn = 110;
    const int mod = 1e9 + 7;
    const double pi = 3.14159265358979;
    
    typedef pair<int, int> P;
    typedef long long ll;
    typedef unsigned long long ull;
    
    int a[maxn];
    
    int main()
    {
    	int t;
    	scanf("%d", &t);
    	while (t--)
    	{
    		int n;
    		char s[20] = { 0 };
    		scanf("%d %s", &n, s);		// e =2.71828 18284 59045 23536 02874 
    		double ans = 0;
    		double b = 0;
    		if (!strcmp(s, "bit")) b = 2;
    		else if (!strcmp(s, "nat")) b = 2.71828182845904523536;
    		else b = 10;
    		for (int i = 0; i < n; i++)
    		{
    			int p;
    			scanf("%d", &p);
    			if(p)
    				ans-=(double)p/100.0*(log((double)p/100.0)/log(b));
    		}
    		printf("%.12f
    ", ans);
    	}
    }


    Fighting~
  • 相关阅读:
    从B树、B+树、B*树谈到R 树
    The Log-Structured Merge-Tree(译)
    Leveldb源码分析--2
    Leveldb源码分析--1
    little-endian And big-endian
    Fixed数据类型
    Varint数值压缩存储方法
    JavaEE开发之SpringBoot工程的创建、运行与配置
    Javaee基本框架(Struts2,Spring,MyBatista)之间的关系
    XLM解析技术概述
  • 原文地址:https://www.cnblogs.com/Archger/p/12774768.html
Copyright © 2020-2023  润新知