Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 42886 | Accepted: 17234 |
Description
The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter 'e'. He was a member of the Oulipo group. A quote from the book:
Tout avait Pair normal, mais tout s’affirmait faux. Tout avait Fair normal, d’abord, puis surgissait l’inhumain, l’affolant. Il aurait voulu savoir où s’articulait l’association qui l’unissait au roman : stir son tapis, assaillant à tout instant son imagination, l’intuition d’un tabou, la vision d’un mal obscur, d’un quoi vacant, d’un non-dit : la vision, l’avision d’un oubli commandant tout, où s’abolissait la raison : tout avait l’air normal mais…
Perec would probably have scored high (or rather, low) in the following contest. People are asked to write a perhaps even meaningful text on some subject with as few occurrences of a given “word” as possible. Our task is to provide the jury with a program that counts these occurrences, in order to obtain a ranking of the competitors. These competitors often write very long texts with nonsense meaning; a sequence of 500,000 consecutive 'T's is not unusual. And they never use spaces.
So we want to quickly find out how often a word, i.e., a given string, occurs in a text. More formally: given the alphabet {'A', 'B', 'C', …, 'Z'} and two finite strings over that alphabet, a word W and a text T, count the number of occurrences of W in T. All the consecutive characters of W must exactly match consecutive characters of T. Occurrences may overlap.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
- One line with the word W, a string over {'A', 'B', 'C', …, 'Z'}, with 1 ≤ |W| ≤ 10,000 (here |W| denotes the length of the string W).
- One line with the text T, a string over {'A', 'B', 'C', …, 'Z'}, with |W| ≤ |T| ≤ 1,000,000.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of occurrences of the word W in the text T.
Sample Input
3 BAPC BAPC AZA AZAZAZA VERDI AVERDXIVYERDIAN
Sample Output
1 3 0
Source
找出第一个字符串在第二个字符串中出现次数
#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstdio>
#include <stdlib.h>
#include <string>
#include <cstring>
#include <map>
#include <set>
#include <queue>
#include <stack>
#define INF 0x3f3f3f3f
#define ms(x,y) memset(x,y,sizeof(x))
using namespace std;
typedef long long ll;
const double pi = acos(-1.0);
const int mod = 1e9 + 7;
const int maxn = 1e5 + 10;
int nextval[100010];
char s[1000100],p[1000010];
//p为模式串
void getnext(char p[], int nextval[]) //朴素kmp,nextval[i]即为1~i-1的最长前后缀长度
{
int len=strlen(p);
int i=0,j=-1;
nextval[0]=-1;
while(i<len)
{
if(j==-1||p[i]==p[j])
{
nextval[++i]=++j;
}
else
j=nextval[j];
}
}
//在s中找p出现的次数
int KMP(char s[], char p[], int nextval[])
{
getnext(p,nextval);
int ans=0;
int i=0; //s下标
int j=0; //p下标
int s_len=strlen(s);
int p_len=strlen(p);
while(i<s_len&&j<p_len)
{
if(j==-1||s[i]==p[j])
{
i++;
j++;
}
else
j=nextval[j];
if(j==p_len)
{
j=nextval[j]; //注意这个优化比较重要
ans++;
}
}
return ans;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
scanf("%d",&n);
while(n--)
{
ms(p,0);
ms(s,0);
scanf(" %s %s",p,s);
printf("%d
",KMP(s,p,nextval));
}
return 0;
}