• 关于文本翻译的经典论文小结


     2014翻译论文

    Sequence to Sequence Learning with Neural Networks

    基本信息:2014 nips 6500+

    目标公式:$ p(y_t|v, y_1, . . . , y_{ t−1}) $

    参数:$y_t$是生成的翻译文本,$v$是表达输入文本的定长向量

    创新点:1.多层LSTM优于浅层LSTM,2.句子逆序效果会更好

    模型架构:用多层LSTM将输入序列$A,B,C,<EOS>$生成$v$ , 而后再利用另一个LSTM生成翻译文本。

    如下为两层LSTM堆叠

     2015翻译论文

    1.Neural Machine Translation by Jointly Learning to Align and Translate

    基本信息:2015 ICLR  6900+

    提出问题:对于越长的文本翻译效果越差

    解决方案:encoder-decoder模型,decoder时期的每个$h_j$都和encoder部分所有$h_i$得到加权值$α_i$,而后再$α_i$乘以对应的$h_i$求和,得到新表示的$c_i$。以上方法能够有重点的关注和解码部分最相关的部分。

    2.Effective Approaches to Attention-based Neural Machine Translation

    基本信息:2015 EMNLP 1800+

    1)Global Attention

    计算流程

    $a_t(s)=align(h_t,ar{h}_s)= frac{exp(score(h_t,ar{h}_s)}{sum_{s^prime}exp(score(h_t,ar{h}_{s^prime})}$

    $

    score(h_t,ar{h}_s)=left{egin{matrix}
    h_t^ opar{h}_s & dot\
    h_t^ op W_aar{h}_s & genral\
    W_a[h_t;ar{h}_s] & concat
    end{matrix} ight.

    $

    $c_t$是$a_t$乘以每一个source hidden state得到。

    $ ilde{h}_t = tanh(W_c[c_t;h_t])$

    $p(y_t|y< t, x) = softmax(W_s ilde{h}_t)$

    故而步骤:$h_t ightarrow a_t ightarrow c_t ightarrow ilde{h}_t $

     

    2)local attention

     global 有两个缺点:1.关注整个input words非常昂贵 2.对于长句子也很不切实际。

    寻找位置和目标词对应的时刻$p_t$,计算$p_t$左右距离为D的source hidden state权重。

    计算流程:

    $p_t = S cdot sigmoid(v^ op_p tanh(W_ph_t))$,$p_t $的另一种计算方式是按照source和target的位置强制对齐。S是source 句子的长度。

    $a_t(s)=align(h_t,ar{h}_s)exp(-frac{(s-p_t)^2}{2sigma^2})$

     2017翻译论文

    1.convolutional sequence to sequence learning

    基本信息:2017 arXiv 600+

    详解:参考https://www.cnblogs.com/huangyc/p/10152296.html

    2.Attention Is All You Need

     参考:https://www.cnblogs.com/AntonioSu/p/12019534.html

  • 相关阅读:
    使用composer命令加载vendor中的第三方类库
    微信小程序
    php无限分类方法类
    php的多功能文件操作类
    计算地图上两点间的距离PHP类
    php的微信公众平台开发接口类
    身份证验证PHP类
    PHP实现微信对账单处理
    PHP实现微信退款功能
    sqlserver 多库查询 sp_addlinkedserver使用方法(添加链接服务器)
  • 原文地址:https://www.cnblogs.com/AntonioSu/p/12263328.html
Copyright © 2020-2023  润新知