贪心算法中,是以自顶向下的方式使用最优子结构,贪心算法会先做选择,在当时看起来是最优的选择,然后再求解一个结果的子问题。
贪心算法是使所做的选择看起来都是当前最佳的,期望通过所做的局部最优选择来产生一个全局最优解
如最小生成树、Dijkstra单源最短路径
贪心选择性质
所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。在动态规划算法中,每步所作的选择往往依赖于相关子问题的解。因而只有在解出相关子问题后,才能作出选择。而在贪心算法中,仅在当前状态下作出最好选择,即局部最优选择。然后再去解作出这个选择后产生的相应的子问题。贪心算法所作的贪心选择可以依赖于以往所作过的选择,但决不依赖于将来所作的选择,也不依赖于子问题的解。正是由于这种差别,动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为一个规模更小的子问题。
对于一个具体问题,要确定它是否具有贪心选择性质,我们必须证明每一步所作的贪心选择最终导致问题的一个整体最优解。通常可以用我们在证明活动安排问题的贪心选择性质时所采用的方法来证明。首先考察问题的一个整体最优解,并证明可修改这个最优解,使其以贪心选择开始。而且作了贪心选择后,原问题简化为一个规模更小的类似子问题。然后,用数学归纳法证明,通过每一步作贪心选择,最终可得到问题的一个整体最优解。其中,证明贪心选择后的问题简化为规模更小的类似子问题的关键在于利用该问题的最优子结构性质。
动态规划:https://www.cnblogs.com/AntonioSu/p/11864508.html
分治算法:https://www.cnblogs.com/AntonioSu/p/11865159.html
参考:https://blog.csdn.net/sinat_33231573/article/details/94581805