• [cc150] 硬币问题


    Given an infinite number of quarters (25 cents), dimes (10 cents), nickels (5 cents) and pennies (1 cent), find how many ways to represent n cents.

    思路:

    从最大面值的硬币开始分析,然后依次看更小面值的硬币。假设 n = 100, 所有 valid 排列组合中

    num_quarters = 0 的是一类,

    num_quarters = 1 的是一类,

    。。。

    num_quarters = 4 的是一类

    num_quarters = 0 的子集中,num_dimes = 0的是一类,num_dimes = 1的是一类,。。。

    按照这种思路,可以简单的用下面的代码实现:

    public int makeChange(int amount) {
        int[] denoms = {25, 10, 5, 1};
        return makeChange(amount, denoms, 0);
    }
    
    public int makeChange(int amount, int[] denoms, int index) {
        if(index == denoms.length - 1)
            return 1;
        
        int ways = 0;
        for(int i = 0; i <= amount / denoms[index]; ++i){
            ways += makeChange(amount - i * denoms[index], denoms, index+1);
        }
        return ways;
    }

    上面的代码是正确的,但是不够efficient,因为存在重复运算,比如一共有60 cents时,子集A{num_quarters=2, num_dimes=0}和子集B{num_quarters=0, num_dimes=5}是相同的,计算了两次。为了避免这种情况,下面的代码进行了优化

    int makeChange(int n){
        int[] denoms = {25, 10, 5, 1};
        int[][] map = new int[n+1][denoms.length];
        return makeChange(n, denoms, 0, map);
    }
    
    int makeChange(int amount, int[] denoms, int index, int[][] map){
        if(map[amount][index] > 0){
            return map[amount][index];
        }
        
        if(index >= denoms.length - 1)
            return 1;
        
        int denomAmount = denoms[index];
        int ways = 0;
        for(int i = 0; i * denomAmount <= amount; i++){
            int amountRemaining = amount - i * denomAmount;
            ways += makeChange(amountRemaining, denoms, index +1 , map);
        }
        
        map[amount][index] = ways;
        return ways;
    }
  • 相关阅读:
    014
    013
    012
    011
    009
    009
    008
    适用于可迭代对象的通用函数
    ubuntu中将py3设置为默认的python
    linux系统下安装gtk
  • 原文地址:https://www.cnblogs.com/Antech/p/3777138.html
Copyright © 2020-2023  润新知