• [ML L8] Outliers -- clean outliers


    #!/usr/bin/python
    
    import random
    import numpy
    import matplotlib.pyplot as plt
    import pickle
    
    from outlier_cleaner import outlierCleaner
    from sklearn.linear_model import LinearRegression
    
    ### load up some practice data with outliers in it
    ages = pickle.load( open("practice_outliers_ages.pkl", "r") )
    net_worths = pickle.load( open("practice_outliers_net_worths.pkl", "r") )
    
    
    ### ages and net_worths need to be reshaped into 2D numpy arrays
    ### second argument of reshape command is a tuple of integers: (n_rows, n_columns)
    ### by convention, n_rows is the number of data points
    ### and n_columns is the number of features
    ages       = numpy.reshape( numpy.array(ages), (len(ages), 1))
    net_worths = numpy.reshape( numpy.array(net_worths), (len(net_worths), 1))
    from sklearn.model_selection import train_test_split
    ages_train, ages_test, net_worths_train, net_worths_test = train_test_split(ages, net_worths, test_size=0.1, random_state=42)
    
    ### fill in a regression here!  Name the regression object reg so that
    ### the plotting code below works, and you can see what your regression looks like
    
    reg = LinearRegression().fit(ages_train, net_worths_train)
    print('score', reg.score(ages_test, net_worths_test))
    print('slope', reg.coef_)
    
    
    try:
        plt.plot(ages, reg.predict(ages), color="blue")
    except NameError:
        pass
    plt.scatter(ages, net_worths)
    plt.show()
    
    
    ### identify and remove the most outlier-y points
    cleaned_data = []
    try:
        predictions = reg.predict(ages_train)
        cleaned_data = outlierCleaner( predictions, ages_train, net_worths_train )
    except NameError:
        print "your regression object doesn't exist, or isn't name reg"
        print "can't make predictions to use in identifying outliers"
    
    
    
    ### only run this code if cleaned_data is returning data
    if len(cleaned_data) > 0:
        ages, net_worths, errors = zip(*cleaned_data)
        ages       = numpy.reshape( numpy.array(ages), (len(ages), 1))
        net_worths = numpy.reshape( numpy.array(net_worths), (len(net_worths), 1))
    
        ### refit your cleaned data!
        try:
            reg.fit(ages, net_worths)
            print('new slope', reg.coef_)
            print('new score', reg.score(ages_test, net_worths_test))
            plt.plot(ages, reg.predict(ages), color="red")
        except NameError:
            print "you don't seem to have regression imported/created,"
            print "   or else your regression object isn't named reg"
            print "   either way, only draw the scatter plot of the cleaned data"
        plt.scatter(ages, net_worths)
        plt.xlabel("ages")
        plt.ylabel("net worths")
        plt.show()
        
    else:
        print "outlierCleaner() is returning an empty list, no refitting to be done"
    #!/usr/bin/python
    import math
    
    def outlierCleaner(predictions, ages, net_worths):
        """
            Clean away the 10% of points that have the largest
            residual errors (difference between the prediction
            and the actual net worth).
    
            Return a list of tuples named cleaned_data where
            each tuple is of the form (age, net_worth, error).
        """
    
        cleaned_data = []
        total = int(len(predictions)*0.9)
    
        ### your code goes here
        for i in range(len(predictions)):
            tuple = (ages[i][0], net_worths[i][0], math.fabs(predictions[i][0] - net_worths[i][0]))
            cleaned_data.append(tuple)
    
        cleaned_data.sort(key=error_aesc_sort)
    
        return cleaned_data[:total]
    
    def error_aesc_sort(e):
        return e[2]

    ('score', 0.8782624703664675)
    ('slope', array([[5.07793064]]))

    ('new slope', array([[6.36859481]]))
    ('new score', 0.983189455395532)

  • 相关阅读:
    Asp.net mvc项目分页功能
    asp.net mvc邮箱激活
    4. Spring 如何通过 XML 文件配置Bean,以及如何获取Bean
    3. Spring 核心之 IOC(控制反转) & DI(依赖注入)
    2. Spring 的 HelloWorld
    1. Spring 简介以及关于 Eclipse 的 Spring Tool Suite 插件安装
    早睡早起身体好,早睡早起有力量,晚安~~
    睡前写几句,缓解一下刷题的心情。。。
    ACM 杭电HDU 2084 数塔 [解题报告]
    ACM HDU 2041--超级楼梯题解
  • 原文地址:https://www.cnblogs.com/Answer1215/p/13326471.html
Copyright © 2020-2023  润新知