• [Python] Gaussian Class


    import math
    import matplotlib.pyplot as plt
    
    class Gaussian():
        """ Gaussian distribution class for calculating and 
        visualizing a Gaussian distribution.
        
        Attributes:
            mean (float) representing the mean value of the distribution
            stdev (float) representing the standard deviation of the distribution
            data_list (list of floats) a list of floats extracted from the data file
                
        """
        def __init__(self, mu = 0, sigma = 1):
            
            self.mean = mu
            self.stdev = sigma
            self.data = []
    
        
        def calculate_mean(self):
        
            """Function to calculate the mean of the data set.
            
            Args: 
                None
            
            Returns: 
                float: mean of the data set
        
            """
                        
            avg = 1.0 * sum(self.data) / len(self.data)
            
            self.mean = avg
            
            return self.mean
    
    
    
        def calculate_stdev(self, sample=True):
    
            """Function to calculate the standard deviation of the data set.
            
            Args: 
                sample (bool): whether the data represents a sample or population
            
            Returns: 
                float: standard deviation of the data set
        
            """
    
            if sample:
                n = len(self.data) - 1
            else:
                n = len(self.data)
        
            mean = self.mean
        
            sigma = 0
        
            for d in self.data:
                sigma += (d - mean) ** 2
            
            sigma = math.sqrt(sigma / n)
        
            self.stdev = sigma
            
            return self.stdev
            
    
        def read_data_file(self, file_name, sample=True):
        
            """Function to read in data from a txt file. The txt file should have
            one number (float) per line. The numbers are stored in the data attribute. 
            After reading in the file, the mean and standard deviation are calculated
                    
            Args:
                file_name (string): name of a file to read from
            
            Returns:
                None
            
            """
                
            with open(file_name) as file:
                data_list = []
                line = file.readline()
                while line:
                    data_list.append(int(line))
                    line = file.readline()
            file.close()
        
            self.data = data_list
            self.mean = self.calculate_mean()
            self.stdev = self.calculate_stdev(sample)
            
            
        def plot_histogram(self):
            """Function to output a histogram of the instance variable data using 
            matplotlib pyplot library.
            
            Args:
                None
                
            Returns:
                None
            """
            plt.hist(self.data)
            plt.title('Histogram of Data')
            plt.xlabel('data')
            plt.ylabel('count')
            
            
            
        def pdf(self, x):
            """Probability density function calculator for the gaussian distribution.
            
            Args:
                x (float): point for calculating the probability density function
                
            
            Returns:
                float: probability density function output
            """
            
            return (1.0 / (self.stdev * math.sqrt(2*math.pi))) * math.exp(-0.5*((x - self.mean) / self.stdev) ** 2)
            
    
        def plot_histogram_pdf(self, n_spaces = 50):
    
            """Function to plot the normalized histogram of the data and a plot of the 
            probability density function along the same range
            
            Args:
                n_spaces (int): number of data points 
            
            Returns:
                list: x values for the pdf plot
                list: y values for the pdf plot
                
            """
            
            mu = self.mean
            sigma = self.stdev
    
            min_range = min(self.data)
            max_range = max(self.data)
            
             # calculates the interval between x values
            interval = 1.0 * (max_range - min_range) / n_spaces
    
            x = []
            y = []
            
            # calculate the x values to visualize
            for i in range(n_spaces):
                tmp = min_range + interval*i
                x.append(tmp)
                y.append(self.pdf(tmp))
    
            # make the plots
            fig, axes = plt.subplots(2,sharex=True)
            fig.subplots_adjust(hspace=.5)
            axes[0].hist(self.data, density=True)
            axes[0].set_title('Normed Histogram of Data')
            axes[0].set_ylabel('Density')
    
            axes[1].plot(x, y)
            axes[1].set_title('Normal Distribution for 
     Sample Mean and Sample Standard Deviation')
            axes[0].set_ylabel('Density')
            plt.show()
    
            return x, y
  • 相关阅读:
    存储过程之六—触发器
    存储过程之五—条件和异常处理
    存储过程之四—游标
    json的那些事
    聊聊js中的typeof
    JavaScript各种继承方式和优缺点
    两边宽度已知,如何让中间自适应
    html5笔记——<section> 标签
    vue实现仿淘宝结账页面
    vue2.0在table中实现全选和反选
  • 原文地址:https://www.cnblogs.com/Answer1215/p/12977806.html
Copyright © 2020-2023  润新知