参考:http://blog.sina.com.cn/s/blog_13050351e0102xfis.html
https://www.sogou.com/link?url=DOb0bgH2eKh1ibpaMGjuy-bS_O7xQYLPIOogrOFmc02ueKW9M67CaVLpMY1k7wxTCB1NmnNSzM-t5pUc3zy0dg..
https://www.sogou.com/link?url=DOb0bgH2eKh1ibpaMGjuy6YnbQPc3cuKWH5w_8iuvJBomuBEhdSpHkUUZED5fr2OXwl-dB-nkEs_c1NbUyGLxQ..
https://jingyan.baidu.com/article/ca00d56c1b3647e99eebcfbd.html
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
from numpy import nan as NaN
import tensorflow as tf
import matplotlib.pyplot as plt
import scipy.io as sio
import os
from sklearn import preprocessing
读取mat数据
load_path="08_1.mat"
load_data = sio.loadmat(load_path)
a = load_data['D']
print(a)
data = DataFrame(a)
print(data)
data.fillna(0)
print(data.fillna(0))
b=data.fillna(0).values
print(b)
数据归一化
a2 = preprocessing.scale(b)
print('数据归一化:')
print(a2)
数据清洗方法2 删除NAN所在的列
load_path2="08_1.mat"
load_data2 = sio.loadmat(load_path2)
a2 = load_data2['D']
print(a2)
data2 = DataFrame(a2)
data2.dropna(axis=0, how='any')
print(data2.dropna(axis=0, how='any'))`
处理前:
处理后: