• 机器学习的最佳入门学习资源


    Programming Libraries 编程库资源

    我是一个“学习要敢于冒险和尝试”观念的倡导者。这是我学习编程的方式,我相信很多人也是这样学习程序设计的。先了解你的能力极限,然后去拓展你的能力。如果你了解如何编程,可以将编程经验很快借鉴到深入学习机器学习上。在你实现一个实际的产品系统之前,你必须遵循一些规则、学习相关数学知识。

    找到一个库并且仔细阅读相关文档,根据教程,开始尝试实现一些东西。下面列出的是开源的机器学习库中最好的几种。我认为,并不是他们中的每一种都适合用在你的系统中,但是他们是你学习、探索和实验的好材料。

    你可以从一个由你熟悉的语言编写的库开始学习,然后再去学习其他功能强大的库。如果你是一个优秀的程序员,你会知道怎样从一种语言,简单合理地迁移到另一种语言。语言的逻辑都是相同的,只是语法和API稍有不同。

    • R Project for Statistical Computing:这是一个开发环境,采用一种近似于Lisp的脚本语言。在这个库中,所有你想要的与统计相关的功能都通过R语言提供,包括一些复杂的图标。CRAN(你可以认为是机器学弟的第三方包)中的机器学习目录下的代码,是由统计技术方法和其他相关领域中的领军人物编写的。如果你想做实验,或是快速拓展知识,R语言都是必须学习的。但它可能不是你学习的第一站。
    • WEKA:这是一个数据挖掘工作平台,为用户提供数一系列据挖掘全过程的API、命令行和图形化用户接口。你可以准备数据、可视化、建立分类、进行回归分析、建立聚类模型,同时可以通过第三方插件执行其他算法。除了WEKA之外, Mahout是Hadoop中为机器学习提供的一个很好的JAVA框架,你可以自行学习。如果你是机器学习和大数据学习的新手,那么坚持学习WEKA,并且全心全意地学习一个库。
    • Scikit Learn:这是用Python编写的,基于NumPy和SciPy的机器学习库。如果你是一个Python或者Ruby语言程序员,这是适合你用的。这个库很用户接口友好,功能强大,并且配有详细的文档说明。如果你想试试别的库,你可以选择Orange。
    • Octave:如果你很熟悉MatLab,或者你是寻求改变的NumPy程序员,你可以考虑 Octave。这是一个数值计算环境,与MatLab像是,借助Octave你可以很方便地解决线性和非线性问题,比如机器学习算法底层涉及的问题。如果你有工程背景,那么你可以由此入手。
    • BigML:可能你并不想进行编程工作。你完全可以不通过代码,来使用 WEKA那样的工具。你通过使用BigMLS的服务来进行更加深入的工作。BigML通过Web页面,提供了机器学习的接口,因此你可以通过浏览器来建立模型。

    挑选出一个平台,并且在你实际学习机器学习的时候使用它。不要纸上谈兵,要去实践!

    Video Courses视频课程

    很多人都是通过视频资源开始接触机器学习的。我在YouTube和VideoLectures上看了很多于机器学习相关的视频资源。这样做的问题是,你可能只是观看视频而并不实际去做。我的建议是,你在观看视频的时候,应该多记笔记,及时后来你会抛弃你的笔记。同时,我建议你将学到的东西付诸实践。

    坦白讲,我没有看见特别合适初学者的视频资源。视频资源都需要你掌握一定的线性代数、概率论等知识。Andrew Ng在斯坦福的讲解可能是最适合初学者的,下面是我推荐的一些视频资源。

    • Stanford Machine Learning斯坦福的机器学习课程:可以在Coursera上观看,这门课是由 Andrew Ng讲解的。只要注册,你可以随时观看所有的课程视频,从Stanford CS229 course下载讲义和笔记。这门课包括了家庭作业和小测试,课程主要讲解了线性代数的知识,使用Octave库。
    • Caltech Learning from Data加利福尼亚理工学院的数据分析课程:你可以在edX上学习这门课程,课程是由Yaser Abu-Mostafa讲解的。所有的课程视频和资料都在加利福尼亚理工学院的网站上。与斯坦福的课程类似,你可以根据自己的情况安排学习进度,完成家庭作业和小论文。它与斯坦福的课程主题相似,关注更多的细节和数学知识。对于初学者来说,家庭作业可能稍有难度。
    • Machine Learning Category on VideoLectures.Net网站中的机器学习目录:这是个很容易令人眼花缭乱的资源库。你可以找出比较感兴趣的资源,并且深入学习。不要纠结于不适合你的视频,或者对于感兴趣的内容你可以做笔记。我自己会一直重复深入学习一些问题,同时发现新的话题进行学习。此外,在这个网站上你可以发现是这个领域的大师是什么样的。
    • “Getting In Shape For The Sport Of Data Science” – 由Jeremy Howard讲授:这是与机器学习竞赛者的对话,他们是一些实践中的R语言用户。这是非常珍贵的资源,因为很少有人会讨论研究一个问题的完整过程和究竟怎样做。我曾经幻想过在网上找到一个TV秀,记录机器学习竞赛的全过程。这就是我开始学习机器学习的经历!

    Overview Papers综述论文

    如果你并不习惯阅读科研论文,你会发现论文的语言非常晦涩难懂。一篇论文就像是一本教科书的片段,但是论文会介绍一个实验或者是领域中其他的前沿知识。然而,如果你准备从阅读论文开始学习机器学习的话,你还是可以找到一些很有意思的文章的。

    • The Discipline of Machine Learning机器学习中的规则:这是由Tom Mitchell编著的白皮书,其中定义了机器学习的规则。Mitchell在说服CMU总裁为一个百年内都存在的问题建立一个独立的机器学习部门时,也用到了这本书中的观点。

    我只是列出了两篇重要的论文,因为阅读论文会让你陷入困境。

    Beginner Machine Learning Books给机器学习初学者的书

    关于机器学习的书有很多,但是几乎没有为初学者量身定做的。什么样的人才是初学者呢?最有可能的情况是,你从另外一个完全不同的领域比如:计算机科学、程序设计或者是统计学,来到机器学习领域。那么,大部分的书籍要求你有一定的线性代数和概率论的基础。

    但是,还有一些书通过讲解最少的算法来鼓励程序员学习机器学习,书中会介绍一些可以使用工具、编程函数库来让程序员尝试。其中最有代表性的书是:《Programming Collective Intelligence》,《Machine Learning for Hackers》,《Hackersand Data Mining: Practical Machine Learning Tools and Techniques》(Python版, R版, 以及Java版)。如果感到迷惑的话,你可以选择其中一本开始学习。

    Machine_Learning02
     
    • Machine Learning for Hackers  (中文版:机器学习:实用案例解析 ):我建议你在阅读了《Programming Collective Intelligence》一书之后,再阅读这本书。这本书中也提供了很多实践练习,但是涉及更多的数据分析,并且使用R语言。我个人很喜欢这本书!
    • Machine Learning: An Algorithmic Perspective:这本书是《Programming Collective Intelligence》的高级版本。它们目的相同(让程序员开始了解机器学习),但是这本书包括一些数学知识,参考样例和phython程序片段。如果你有兴趣的话,我建议你在看完《Programming Collective Intelligence》之后来阅读这本书。
    • 数据挖掘:实用机器学习工具与技术(英文版·第3版) :我自己是从这本书开始了解机器学习的,那时是2000年这本书还是第一版。我那时是Java程序员,这本书和WEKA库为我的学习和实践提供了一个很好的环境。我通过这样的平台和一些插件,实现我的算法,并且真正开始实践机器学习和数据挖掘的过程。我强烈推荐这本书,和这样的学习过程。

    有一些人认为那些经典的机器学习教科书很了不起。 我也赞同,那些书的确非常好。但是,我认为,对于初学者来说,这些书可能并不合适。

    Further Reading 继续阅读

    在写这篇文章时,我认真思考了相关问题,同时也参考了其他人推荐的资料,以确保我没有遗漏任何重要参考资料。为了确保文章的完整性,下面也列出了一些网上流行的,可以供初学者使用的材料。.

    • 相关的理论、书籍、论文、课程、博客:
      • [Book] Yoshua Bengio, Ian Goodfellow, Aaron Courville. Deep Learning. 2015.
    • 相关的库、工具
      • Caffe (C++, with Python wrapper)
    • 相关的开源项目、demo
  • 相关阅读:
    删除重复记录
    SQL Server调试存储过程
    SQL日期格式化应用大全
    阻塞分析
    Ajax原理详细说明
    varchar和nvarchar的区别
    临时表vs.表变量以及它们对SQLServer性能的影响
    Enterprise Library系列文章回顾与总结
    关于分页控件的文章
    SQL操作全集
  • 原文地址:https://www.cnblogs.com/Anita9002/p/5869428.html
Copyright © 2020-2023  润新知