样例
对于数组 [1,2,7,8,5]
,查询[(1,2),(0,4),(2,4)]
, 返回 [9,23,20]
挑战
O(logN) time for each query
思路:看到区间求和问题,符合线段树适用连续区间统计或者查询的问题。所以,考虑构建合适的线段树来求解。
题目类型与区间最小数问题类似。先构建对应的线段树,然后查询;
vector<int>& A一定要加引用,否则,每次调用函数都要拷贝容器,很耗时!!!
/** * Definition of Interval: * classs Interval { * int start, end; * Interval(int start, int end) { * this->start = start; * this->end = end; * } */ /* 思路:看到区间求和问题,符合线段树适用连续区间统计或者查询的问题。所以,考虑构建合适的线段树来求解。 题目类型与区间最小数问题类似。先构建对应的线段树,然后查询; */ class SegmentTreeNode33{ public: int start,end; long long sum; SegmentTreeNode33* right,*left; SegmentTreeNode33(int start,int end){ this->start=start; this->end=end; this->sum=0; this->left=this->right=NULL; } }; class Solution { public: /** *@param A, queries: Given an integer array and an query list *@return: The result list */ //线段树构造; SegmentTreeNode33* build(int start,int end,vector<int>& A){ //vector<int>& A一定要加引用,否则,每次调用函数都要拷贝容器很耗时!!! if(start>end) return NULL; SegmentTreeNode33* root= new SegmentTreeNode33(start,end); if(start!=end){ int mid=start+(end-start)/2; root->left=build(start,mid,A); root->right=build(mid+1,end,A); root->sum=root->left->sum+root->right->sum; }else root->sum=A[start]; return root; } //线段树查询; long long query(SegmentTreeNode33* root,int start,int end){ if(root==NULL||start>end) return 0; if(start<=root->start&&end>=root->end) return root->sum; int mid=(root->start+root->end)/2; if(start>mid) return query(root->right,start,end); else if(end<mid+1) return query(root->left,start,end); else return query(root->right,mid+1,end)+query(root->left,start,mid); } vector<long long> intervalSum(vector<int> &A, vector<Interval> &queries) { // write your code here vector<long long> res; SegmentTreeNode33* root=build(0,A.size()-1,A); for(Interval qujian:queries){ res.push_back(query(root,qujian.start,qujian.end)); } return res; } };