ip install gensim安装好库后,即可导入使用:
1、训练模型定义
from gensim.models import Word2Vec model = Word2Vec(sentences, sg=1, size=100, window=5, min_count=5, negative=3, sample=0.001, hs=1, workers=4)
参数解释:
0.sentences是训练所需语料,可通过以下方式进行加载
sentences=word2vec.Text8Corpus(file)
此处训练集的格式为英文文本或分好词的中文文本
1.sg=1是skip-gram算法,对低频词敏感;默认sg=0为CBOW算法。
2.size是输出词向量的维数,值太小会导致词映射因为冲突而影响结果,值太大则会耗内存并使算法计算变慢,一般值取为100到200之间。
3.window是句子中当前词与目标词之间的最大距离,3表示在目标词前看3-b个词,后面看b个词(b在0-3之间随机)。
4.min_count是对词进行过滤,频率小于min-count的单词则会被忽视,默认值为5。
5.negative和sample可根据训练结果进行微调,sample表示更高频率的词被随机下采样到所设置的阈值,默认值为1e-3。
6.hs=1表示层级softmax将会被使用,默认hs=0且negative不为0,则负采样将会被选择使用。
7.workers控制训练的并行,此参数只有在安装了Cpython后才有效,否则只能使用单核。
详细参数说明可查看word2vec源代码。
2、训练后的模型保存与加载
model.save(fname) model = Word2Vec.load(fname)
3、模型使用
model.most_similar(positive=['woman', 'king'], negative=['man']) #输出[('queen', 0.50882536), ...] model.doesnt_match("breakfast cereal dinner lunch".split()) #输出'cereal' model.similarity('woman', 'man') #输出0.73723527 model['computer'] # raw numpy vector of a word #输出array([-0.00449447, -0.00310097, 0.02421786, ...], dtype=float32)
gensim word2vec实战
我选择的《人民的名义》的小说原文作为语料,语料原文在这里。
完整代码参见 github: https://github.com/ljpzzz/machinelearning/blob/master/natural-language-processing/word2vec.ipynb
拿到了原文,我们首先要进行分词,这里使用结巴分词完成。在中文文本挖掘预处理流程总结中,我们已经对分词的原理和实践做了总结。
加入下面的一串人名是为了结巴分词能更准确的把人名分出来。
# -*- coding: utf-8 -*- import jieba import jieba.analyse jieba.suggest_freq('沙瑞金', True) jieba.suggest_freq('田国富', True) jieba.suggest_freq('高育良', True) jieba.suggest_freq('侯亮平', True) jieba.suggest_freq('钟小艾', True) jieba.suggest_freq('陈岩石', True) jieba.suggest_freq('欧阳菁', True) jieba.suggest_freq('易学习', True) jieba.suggest_freq('王大路', True) jieba.suggest_freq('蔡成功', True) jieba.suggest_freq('孙连城', True) jieba.suggest_freq('季昌明', True) jieba.suggest_freq('丁义珍', True) jieba.suggest_freq('郑西坡', True) jieba.suggest_freq('赵东来', True) jieba.suggest_freq('高小琴', True) jieba.suggest_freq('赵瑞龙', True) jieba.suggest_freq('林华华', True) jieba.suggest_freq('陆亦可', True) jieba.suggest_freq('刘新建', True) jieba.suggest_freq('刘庆祝', True) with open('./in_the_name_of_people.txt') as f: document = f.read() #document_decode = document.decode('GBK') document_cut = jieba.cut(document) #print ' '.join(jieba_cut) //如果打印结果,则分词效果消失,后面的result无法显示 result = ' '.join(document_cut) result = result.encode('utf-8') with open('./in_the_name_of_people_segment.txt', 'w') as f2: f2.write(result) f.close() f2.close()
拿到了分词后的文件,在一般的NLP处理中,会需要去停用词。由于word2vec的算法依赖于上下文,而上下文有可能就是停词。因此对于word2vec,我们可以不用去停词。
现在我们可以直接读分词后的文件到内存。这里使用了word2vec提供的LineSentence类来读文件,然后套用word2vec的模型。
这里只是一个示例,因此省去了调参的步骤,实际使用的时候,你可能需要对我们上面提到一些参数进行调参。
# import modules & set up logging import logging import os from gensim.models import word2vec logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) sentences = word2vec.LineSentence('./in_the_name_of_people_segment.txt') model = word2vec.Word2Vec(sentences, hs=1,min_count=1,window=3,size=100)
模型出来了,我们可以用来做什么呢?这里给出三个常用的应用。
第一个是最常用的,找出某一个词向量最相近的词集合,代码如下:
req_count = 5 for key in model.wv.similar_by_word('沙瑞金'.decode('utf-8'), topn =100): if len(key[0])==3: req_count -= 1 print key[0], key[1] if req_count == 0: break;
我们看看沙书记最相近的一些3个字的词(主要是人名)如下:
第二个应用是看两个词向量的相近程度,这里给出了书中两组人的相似程度:
print model.wv.similarity('沙瑞金'.decode('utf-8'), '高育良'.decode('utf-8')) print model.wv.similarity('李达康'.decode('utf-8'), '王大路'.decode('utf-8'))
输出如下:
第三个应用是找出不同类的词,这里给出了人物分类题:
print model.wv.doesnt_match(u"沙瑞金 高育良 李达康 刘庆祝".split())
word2vec也完成的很好,输出为"刘庆祝"。
gensim word2vec :https://www.cnblogs.com/pinard/p/7278324.html
word2vec原理:http://www.cnblogs.com/pinard/p/7160330.html
原文:https://blog.csdn.net/angus_monroe/article/details/76999920