• 浙江十套


    漂亮字符串

    题目分析

    如果(maxO == 0) 说明只有(X), 答案就是(maxX)
    如果(X)不够用,说明每次都是放(maxO)(O),用一个(X)隔开 (OOOOOXOOOOOX cdots)
    此时有(countO ge (countX + 1) * maxO)
    因此,最大是 (countX + (countX + 1) * maxO)

    注意更新

    代码实现

    #include <iostream>
    #include <cstdio>
    long long CountO, CountX, maxO, maxX;
    
    int main() {
    
    	freopen("bs.in","r",stdin);
    	freopen("bs.out","w",stdout);
    
    	while (scanf("%lld%lld%lld%lld", &CountO, &CountX, &maxO, &maxX)) {
    		maxX = std::min(maxX, CountX);
    		maxO = std::min(maxO, CountO);
    		if (maxO == 0)
    			printf("%lld
    ", maxX);
    		else if (maxX == 0)
    			printf("%lld
    ", maxO);
    		else if (CountO > (CountX + 1) * maxO)
    			printf("%lld
    ",CountX + (CountX + 1) * maxO);
    		else if (CountX > (CountO + 1) * maxX) 
    			printf("%lld
    ", CountO + (CountO + 1) * maxX);
    		else
    			printf("%lld
    ", CountX + CountO);
    	}
    	return 0;
    }
    

    Set

    题目分析

    有倍数关系的加入同一集合
    一个线性筛 + 并查集 (有倍数关系)

    代码实现

    #include <cstdio>
    #include <iostream>
    using namespace std;
    
    const int maxn = 100001;
    bool pflag[maxn];
    int prime[maxn>>1];
    int fa[maxn];
    int A, B;
    int prime_cnt = 0;
    int ans;
    int P;
    
    inline void Prime_Filter() {
    	for (int i = 2; i <= B; ++ i){
    		if(!pflag[i]) prime[ ++ prime_cnt] = i;
    		for (int j = 1; j <= prime_cnt && prime[j] * i <= B; ++ j){
    			pflag[prime[j] * i] = true;
    			if ( i % prime[j] == 0) break;
    		}
    	}
    }
    
    inline int getRoot(int x) {
    	if (x == fa[x]) return x;
    	return fa[x] = getRoot(fa[x]);
    }
    
    bool judgeEqual(int x,int y) {
    	return getRoot(x)==getRoot(y);
    }
    
    inline void join(int x,int y) {
    	x = getRoot(x), y = getRoot(y);
    	fa[y] = x;
    }
    
    inline void init() {
    	cin >> A >> B >> P;
    	ans = 0;
    	for (int i = 1; i <= B; ++ i) {
    		fa[i] = i;
    	}
    	Prime_Filter();
    }
    
    inline void solve() {
    	int begin = 1;
    	for (; prime[begin] < P; ++ begin);
    	for (int k = prime[begin]; k <= B && k > 1; k = prime[++ begin]){
    		for (int i = A/k*k, start = i; i <= B; start = i, i += k) {
    			if (i < A || start < A) continue;
    			if(!judgeEqual(i,start)) {
    				join(i,start);
    			}
    		}
    	}
    	for (int i =A; i <= B; ++ i)
    		if (fa[i] == i) ans ++;
    }
    
    int main() {
    	freopen("set.in","r",stdin);
    	freopen("set.out","w",stdout);
    	init();
    	solve();
    	cout << ans;
    }
    

    Prison

    题目分析

    动态规划经典题目,考的时候没有想出来优化,A得很水。。。。
    (DP[i][j])表示在([i,j])区间所有该被释放的人都被释放的最小支付代价。
    若是释放(k),那么代价为(DP[i][k-1]+DP[k+1][j]+(j-i))
    这里的(sum[i])指的是前i个位置中有多少犯人无法被释放。

    代码实现

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    const int MAX = 1010;
    const int Inf = 0x7fffffff;
    int n, m, a[MAX], sum[MAX], DP[MAX][MAX];
    
    inline void init() {
    	for (int i = 0; i < MAX; ++ i) {
    		std::fill(DP[i], DP[i] + MAX, Inf);
    		DP[i][i] = 0;
    	}
    	scanf("%d%d", &n, &m);
    	for (int i = 1; i <= m; ++ i)
    		scanf("%d", &a[i]);
    	std::sort(a + 1, a + m + 1);
    	
    	for (int i = 1; i <= m; ++ i)
    		sum[i] = a[i] - a[i - 1] - 1;
    	sum[m + 1] = n - a[m];
    	for (int i = 1; i <= m + 1; ++ i)
    		sum[i] = sum[i] + sum[i-1];
    }
    
    inline void solve() {
    	for (int i = m + 1; i >= 1; -- i)
    		for (int j = i + 1; j <= m + 1; ++ j)
    			for (int k = i; k < j; ++ k)
    				DP[i][j] = std::min(DP[i][j], DP[i][k] + DP[k + 1][j] + sum[j] - sum[i - 1] + j - i - 1);
    }
    
    int main() {
    	freopen("prison.in","r",stdin);
    	freopen("prison.out","w",stdout);
    	init();
    	solve();
    	printf("%d
    ", DP[1][m+1]);
    	return 0;
    }
    

    Tree

    题目分析

    难度:省选/省选+
    最大匹配 : 在一个无向图中,定义一条边覆盖的点为这条边的两个端点。找到一个边集S包含最多的边,使得这个边集覆盖到的所有顶点中的每个顶点只被一条边覆盖。S的大小叫做图的最大匹配。
    我们发现,一颗树的最大匹配取决于它的子树的匹配情况,因此很容易想到以子树为阶段,当前节点是否已经匹配为状态进行DP
    首先考虑求最大匹配是多少
    (f[i][0/1])表示以(i)为根的子树,当前节点是/否已经匹配的最大匹配数,用(g[i][0/1])表示方案数
    (A_i)(i)节点儿子的集合
    显然对于 ((j in A_i))我们有如下转移

    [f[i][0] = sum max{f[j][0], f[j][1]}, ]

    [g[i][0] = prod_{f[j][0] > f[j][1]}g[j][0] imes prod_{f[j][0] > f[j][1]} g[j][1] imes prod_{f[j][0] == f[j][1]} (g[j][0] + g[j][1]) ]

    如果当前节点要选的话,那就是一个儿子必须要连,剩下的取最大值

    [f[i][1] = max{f[i][0] - max(f[j][0], f[j][1])+f[j][0]}+1 ]

    (g[i][1]) 的转移,类似于(g[i][0])的求法,分三种情况乘在一起就可以了

    高精度DP一下吧(此题代码超级毒瘤)
    我先放一个简单的

    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #define MAX 1000
    #define HMAX (MAX*4)
    #define DMAX (MAX/10)
    #define BASE 1000
    
    struct number {
        int digits;
        int values[DMAX];
    };
    char names[HMAX][11];
    int next_sibling[HMAX];
    int first_subord[HMAX];
    int withn[HMAX];
    int woutn[HMAX];
    int active[HMAX];
    int root;
    struct number with[HMAX];
    struct number wout[HMAX];
    
    void bug(void) {
        fprintf(stderr,"There is a bug walking around...
    ");
        exit(0);
    }
    
    void zero(struct number *result) {
        result->digits=0;
    }
    
    void unit(struct number *result) {
        result->digits=1;
        result->values[0]=1;
    }
    
    void add(struct number *result, struct number *what) {
        int k;
        while (result->digits<what->digits) result->values[result->digits++]=0;
        for (k=0; k<what->digits; k++) {
            if (k&&(result->values[k-1]>=BASE)) {
                result->values[k]+=result->values[k-1]/BASE;
                result->values[k-1]%=BASE;
            }
            result->values[k]+=what->values[k];
        }
        if (!k) return;
        for (; (result->values[k-1]>=BASE)&&(k<result->digits); k++) {
            result->values[k]+=result->values[k-1]/BASE;
            result->values[k-1]%=BASE;
        }
        if (result->values[k-1]>=BASE) {
            if (k!=result->digits) bug();
            result->values[k]=result->values[k-1]/BASE;
            result->values[k-1]%=BASE;
            result->digits++;
        }
    }
    
    void mul(struct number *result, struct number *what) {
        int i,j;
        struct number aux,what2;
        zero(&what2);
        add(&what2,result); // copy
        zero(result);
        for (i=0; i<what->digits; i++) {
            for (j=0; j<what2.digits; j++) aux.values[i+j]=what->values[i]*what2.values[j];
            for (j=0; j<i; j++) aux.values[j]=0;
            aux.digits=what2.digits+i;
            add(result,&aux);
        }
    }
    
    void print(struct number *what) {
        int i;
        if (!what->digits) {
            printf("0");
            exit(0);
        }
        printf("%d",what->values[what->digits-1]);
        for (i=what->digits-2; i>=0; i--) printf("%03d",what->values[i]);
    }
    
    int hash(char *name) {
        int i,r;
        for (i=0, r=0; name[i]; i++) {
            r=(13*r+name[i]-'0')%HMAX;
        }
        return r;
    }
    
    int create(char *name) {
        int i=hash(name);
        while (active[i]) {
            i++;
            if (i>=HMAX) i=0;
        }
        active[i]=1;
        strcpy(names[i],name);
        next_sibling[i]=-1;
        first_subord[i]=-1;
        return i;
    }
    
    int find(char *name) {
        int i=hash(name);
        while (strcmp(name,names[i])&&active[i]) {
            i++;
            if (i>=HMAX) i=0;
        }
        if (!active[i]) return -1;
        return i;
    }
    
    void read_in(void) {
        int i,j,N,k,children;
        char name[11];
        root=create("1");
        scanf("%d",&N);
        for (i=0; i<N; i++) {
            scanf("%s",name);
            k=find(name);
            scanf("%d",&children);
            while (children--) {
                scanf("%s",name);
                j=create(name);
                next_sibling[j]=first_subord[k];
                first_subord[k]=j;
            }
        } // endfor i
    }
    
    void compute(int which) {
        int i,k;
        struct number aux;
        for (k=first_subord[which]; k!=-1; k=next_sibling[k]) compute(k);
        woutn[which]=0;
        unit(&wout[which]);
        for (k=first_subord[which]; k!=-1; k=next_sibling[k]) {
            woutn[which]+=withn[k];
            mul(&wout[which],&with[k]);
        }
        if (first_subord[which]==-1) {
            withn[which]=0;
            unit(&with[which]);
            return;
        }
        for (k=first_subord[which]; k!=-1; k=next_sibling[k])
            if (withn[k]==woutn[k]) break;
        if (k==-1) {
            withn[which]=woutn[which];
            zero(&with[which]);
            for (k=first_subord[which]; k!=-1; k=next_sibling[k]) {
                unit(&aux);
                for (i=first_subord[which]; i!=-1; i=next_sibling[i])
                    mul(&aux,i==k?&wout[i]:&with[i]);
                add(&with[which],&aux);
            } // endfor k
            add(&with[which],&wout[which]);
        } else {
            withn[which]=woutn[which]+1;
            zero(&with[which]);
            for (k=first_subord[which]; k!=-1; k=next_sibling[k]) {
                if (withn[k]!=woutn[k]) continue;
                unit(&aux);
                for (i=first_subord[which]; i!=-1; i=next_sibling[i])
                    mul(&aux,i==k?&wout[i]:&with[i]);
                add(&with[which],&aux);
            } // endfor k
        } // endif k==-1
    }
    
    int main(void) {
        read_in();
        compute(root);
        printf("%d
    ",withn[root]);
        print(&with[root]);
        printf("
    ");
        return 0;
    }
    
  • 相关阅读:
    手机号/身份证加星处理
    手机号,邮箱等验证表达式
    导入Excel工具类
    ajax 跨域的解决 cors
    centos7 防火墙命令
    redis 常见问题总结
    数据库(1)
    设计模式和常用的设计模式
    mvc 模式 与各部分的实现
    线程基础(1)
  • 原文地址:https://www.cnblogs.com/Alessandro/p/9154628.html
Copyright © 2020-2023  润新知