• spark变量使用broadcast、accumulator


    broadcast


     

    官方文档描述:

    Broadcast a read-only variable to the cluster, returning a [[org.apache.spark.broadcast.Broadcast]] object for reading it in distributed functions. The variable will be sent to each cluster only once.

    源码分析:

    这里使用告警方式代替异常,为了是避免用户进程中断;可能有用户创建了广播变量但是没有使用他们;


     

      /**
       * Broadcast a read-only variable to the cluster, returning a
       * [[org.apache.spark.broadcast.Broadcast]] object for reading it in distributed functions.
       * The variable will be sent to each cluster only once.
       */
      def broadcast[T: ClassTag](value: T): Broadcast[T] = {
        assertNotStopped()
        require(!classOf[RDD[_]].isAssignableFrom(classTag[T].runtimeClass),
          "Can not directly broadcast RDDs; instead, call collect() and broadcast the result.")
        val bc = env.broadcastManager.newBroadcast[T](value, isLocal)
        val callSite = getCallSite
        logInfo("Created broadcast " + bc.id + " from " + callSite.shortForm)
        cleaner.foreach(_.registerBroadcastForCleanup(bc))
        bc
      }

     广播变量允许程序员将一个只读的变量缓存在每台机器上,而不用在任务之间传递变量。广播变量可被用于有效地给每个节点一个大输入数据集的副本。Spark还尝试使用高效地广播算法来分发变量,进而减少通信的开销。 Spark的动作通过一系列的步骤执行,这些步骤由分布式的洗牌操作分开。Spark自动地广播每个步骤每个任务需要的通用数据。这些广播数据被序列化地缓存,在运行任务之前被反序列化出来。这意味着当我们需要在多个阶段的任务之间使用相同的数据,或者以反序列化形式缓存数据是十分重要的时候,显式地创建广播变量才有用。

    实例


    List<Integer> data = Arrays.asList(5, 1, 1, 4, 4, 2, 2);
    JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data,5);
    final Broadcast<List<Integer>> broadcast = javaSparkContext.broadcast(data);
    JavaRDD<Integer> result = javaRDD.map(new Function<Integer, Integer>() {    
      List<Integer> iList = broadcast.value();    
      @Override    
      public Integer call(Integer v1) throws Exception {        
        Integer isum = 0;        
        for(Integer i : iList)            
          isum += i;        
        return v1 + isum;    
      }
    });
    System.out.println(result.collect());

     accumulator


    源码分析:

    // Methods for creating shared variables
    
      /**
       * Create an [[org.apache.spark.Accumulator]] variable of a given type, which tasks can "add"
       * values to using the `+=` method. Only the driver can access the accumulator's `value`.
       */
      @deprecated("use AccumulatorV2", "2.0.0")
      def accumulator[T](initialValue: T)(implicit param: AccumulatorParam[T]): Accumulator[T] = {
        val acc = new Accumulator(initialValue, param)
        cleaner.foreach(_.registerAccumulatorForCleanup(acc.newAcc))
        acc
      }
    
      /**
       * Create an [[org.apache.spark.Accumulator]] variable of a given type, with a name for display
       * in the Spark UI. Tasks can "add" values to the accumulator using the `+=` method. Only the
       * driver can access the accumulator's `value`.
       */
      @deprecated("use AccumulatorV2", "2.0.0")
      def accumulator[T](initialValue: T, name: String)(implicit param: AccumulatorParam[T])
        : Accumulator[T] = {
        val acc = new Accumulator(initialValue, param, Some(name))
        cleaner.foreach(_.registerAccumulatorForCleanup(acc.newAcc))
        acc
      }

     累加器是仅仅被相关操作累加的变量,因此可以在并行中被有效地支持。它可以被用来实现计数器和sum。Spark原生地只支持数字类型的累加器,开发者可以添加新类型的支持。如果创建累加器时指定了名字,可以在Spark的UI界面看到。这有利于理解每个执行阶段的进程(对于Python还不支持) 。
    累加器通过对一个初始化了的变量v调用SparkContext.accumulator(v)来创建。在集群上运行的任务可以通过add或者”+=”方法在累加器上进行累加操作。但是,它们不能读取它的值。只有驱动程序能够读取它的值,通过累加器的value方法。

    class VectorAccumulatorParam implements AccumulatorParam<Vector> {    
      @Override    
      //合并两个累加器的值。
      //参数r1是一个累加数据集合
      //参数r2是另一个累加数据集合
      public Vector addInPlace(Vector r1, Vector r2) {
        r1.addAll(r2);
        return r1;    
      }    
      @Override 
      //初始值   
      public Vector zero(Vector initialValue) {        
         return initialValue;    
      }    
      @Override
      //添加额外的数据到累加值中
      //参数t1是当前累加器的值
      //参数t2是被添加到累加器的值    
      public Vector addAccumulator(Vector t1, Vector t2) {        
          t1.addAll(t2);        
          return t1;    
      }
    }
    List<Integer> data = Arrays.asList(5, 1, 1, 4, 4, 2, 2);
    JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data,5);
    
    final Accumulator<Integer> accumulator = javaSparkContext.accumulator(0);
    Vector initialValue = new Vector();
    for(int i=6;i<9;i++)    
      initialValue.add(i);
    //自定义累加器
    final Accumulator accumulator1 = javaSparkContext.accumulator(initialValue,new VectorAccumulatorParam());
    JavaRDD<Integer> result = javaRDD.map(new Function<Integer, Integer>() {    
      @Override    
      public Integer call(Integer v1) throws Exception {        
        accumulator.add(1);        
        Vector term = new Vector();        
        term.add(v1);        
        accumulator1.add(term);        
        return v1;    
      }
    });
    System.out.println(result.collect());
    System.out.println("~~~~~~~~~~~~~~~~~~~~~" + accumulator.value());
    System.out.println("~~~~~~~~~~~~~~~~~~~~~" + accumulator1.value());

    参考文章:


     

     https://www.cnblogs.com/jinggangshan/p/8117155.html

  • 相关阅读:
    SQL 数据库 复制 与订阅 实现数据同步
    SQL 2008配置管理工具服务显示 远程过程调用失败0x800706be
    SQL2005中使用identity_insert向自动增量字段中写入内
    【树莓派】【转载】基于树莓派,制作家庭媒体中心+下载机
    Linux 按时间批量删除文件(删除N天前文件)
    【树莓派】为树莓派配置或扩展swap分区
    开源硬件相关平台
    【树莓派】树莓派上刷android系统
    【树莓派】树莓派上面安装配置teamviewer
    【树莓派】使用xdrp远程登录树莓派的图形界面
  • 原文地址:https://www.cnblogs.com/AlanWilliamWalker/p/10960858.html
Copyright © 2020-2023  润新知