• HNOI 2010 物品调度 并查集 置换


    题意:

      题意有点细,暂不概括。请仔细审题。

    分析:

      我们先要把c生成出来。

      记得颜神讲这道题,首先表明,这道题有两个问题需要处理。

      第一个是要先定位,第二个是要求最小移动步数。

      定位时对于每一个物品i,要在不与之前物品冲突的基础上保证y最小,然后x最小。

      可以想到,如果没有c,当y一定时,枚举x就相当于在一个环上不断向后移动d个位置,可以想到,当枚举到一定程度时,会回到原来的位置。

      这样呢,为了不冲突,我们就只能利用调整y来摆脱窘境。

      所以一个思路就出来了,我们从小到大枚举y,对于每个y,我们把满足(ci+d*xi+yi) mod n的位置都不重复地占满,此时就要继续让y变大再寻找空位了。

      序列c存在的意义是什么???我想仅仅是为了使这一步没有数学规律吧……

      这样呢,我们就确定了一个终序列,此时就需要拿出置换相关的知识,来求最小步数了。

      因为我们只有一个空位可起到容器的作用,两个实际的物品也不能直接交换,所以容易发现,一个置换要想完成,就必须要完成若干个类似环的操作(相当于空位在环上走)。但是,如果环上没有空位怎么办??

      就要分类讨论。

      首先,如果我们找到的一个环上有空位,那么这个环产生的代价最小是环长-1(因为有个空位)

      但是如果环上没有空位,那么产生的代价是环长+1(因为要把空位先换过来,产生1的代价,最终要把空位归位或者哪来的环会哪去,又产生1的代价)

      致此,这道题就差不多做完了。

    代码:

     1 #include<bits/stdc++.h>
     2 #define ll long long
     3 using namespace std;
     4 const int N=100005;
     5 bool v[N];ll c[N];int s,d;
     6 int fa[N],pos[N],t,n,m,p,q;
     7 int get(int x){
     8     return fa[x]==x?x:fa[x]=get(fa[x]);
     9 } int main(){
    10     scanf("%d",&t);
    11     while(t){ t--;
    12         scanf("%d%d%d%d%d%d",&n,&s,&q,&p,&m,&d);
    13         for(int i=0;i<n;i++) fa[i]=i,v[i]=0;
    14         pos[0]=s;v[s]=1;fa[s]=(s+d)%n;
    15         for(int i=1;i<n;i++) c[i]=(c[i-1]*q+p)%m;
    16         for(int i=1;i<n;i++){
    17             int y=0;
    18             while(v[get((y+c[i])%n)]) y++;
    19             pos[i]=get((y+c[i])%n);
    20             v[pos[i]]=1;
    21             fa[pos[i]]=get((pos[i]+d)%n);
    22         } memset(v,0,sizeof(v));int ans=0;
    23         for(int i=0;i<n;i++){
    24             if(v[i]||pos[i]==i) continue;
    25             int cur=i,l=0;bool bs=0;
    26             while(!v[cur]){
    27                 if(!cur) bs=1;l++;
    28                 v[cur]=1;cur=pos[cur];
    29             } if(bs) ans+=(l-1);
    30             else ans+=(l+1);
    31         } printf("%d
    ",ans);
    32     } return 0;
    33 }
    置换
  • 相关阅读:
    Mysql表设计需要注意的问题
    Mysql开始root远程访问权限
    python学习之简介
    常用的Git命令
    Java虚拟机类加载机制
    java垃圾回收机制的理解
    解析和操作XML文件
    Hibernate的工作流程以及三种状态(面试题)
    SSH整合
    Spring事务管理的注解方式
  • 原文地址:https://www.cnblogs.com/Alan-Luo/p/10189685.html
Copyright © 2020-2023  润新知