• cf Round #763(Div. 2)


    B

    Description
    初始区间集为\(\{[1,n]\}\),每次会从中拿出一个区间\([l,r]\),随机选一个区间内的数\(d\)对区间进行分割,分割后的结果\(\{l,d-1\},\{d+1,r\}\)放回区间集。重复操作直到区间为空。
    现给定所有的\([l,r]\),求对应的\(d\)
    Solution
    还原\([l,r]\)的先后关系即可求解。
    \([l,r]\)\(l\)升序排序,若\(l\)相同,按区间长度降序排序。
    (显而易见,短区间由长区间分割而来;而分割后的结果也一定形如\([l,r'],[l',r]\)\([l,r-1]\)\([l+1,r]\)

    #include<bits/stdc++.h>
    using namespace std;
    
    const int N=1005;
    struct range{
    	int l,r;
    }a[N];
    int n,t;
    bool cmp(range a,range b){
    	if(a.l!=b.l) return a.l<b.l;
    	return a.r>b.r;
    } 
    int main(){
    	scanf("%d",&t);
    	while(t--){
    		scanf("%d",&n);
    		for(int i=1;i<=n;++i)
    			scanf("%d%d",&a[i].l,&a[i].r);
    		sort(a+1,a+1+n,cmp);
    		for(int i=1,d;i<=n;++i){
    			if(a[i].l==a[i].r){
    				printf("%d %d %d\n",a[i].l,a[i].r,a[i].l);
    			}
    			else{
    				if(a[i+1].l>a[i].l){
    					printf("%d %d %d\n",a[i].l,a[i].r,a[i].l);
    				}
    				else{
    					printf("%d %d %d\n",a[i].l,a[i].r,a[i+1].r+1);
    				}
    			}
    		} 
    	}
    	return 0;
    } 
    

    C

    Description
    \(n\)堆石子,每个堆\(i\)可以取出\(3d\)个石子分\(2d\)\(i-2\)\(d\)个给\(i-1\)\(i\geq 3,3d\leq\)\(i\)堆拥有的初始石子数),求最小堆的最大值。
    Solution
    二分+贪心即可。

    #include<bits/stdc++.h>
    using namespace std;
     
    const int N=200005;
    int a[N],h[N],n,t;
    bool chk(int ans){
    	for(int i=1;i<=n;++i) a[i]=h[i];
    	for(int i=n,d;i>=3;--i){
    		if(a[i]<ans) return false;
    		d=min(h[i],(a[i]-ans))/3;
    		a[i-1]+=d;
    		a[i-2]+=d*2;
    	}
    	return a[1]>=ans&&a[2]>=ans;
    }
    int main(){
    	scanf("%d",&t);
    	while(t--){
    		scanf("%d",&n);
    		int l=1,r=0,mid;
    		for(int i=1;i<=n;++i){
    			scanf("%d",&h[i]);
    			r=max(r,h[i]);
    		}
    		while(l<r){
    			mid=(l+r+1)>>1;
    			if(chk(mid)) l=mid;
    			else r=mid-1;
    		}
    		printf("%d\n",l);
    	}
    	return 0;
    }
    

    E

    Description
    给定一个大小为n的树,每个节点有个字符,树的字符串为按中序遍历顺序拼接的字符串。
    每个点的字符可以至多重复一次,当且仅当这个点到根的路径上所有节点都重复。至多重复k个节点。
    求字典序最小的字符串。
    Solution
    贪心即可。

    • 预处理出每个点是否重复会更优:当且仅当这个点\(c_i\)在中序遍历中,下一个不同于\(c_i\)的字符\(c_j\)满足\(c_i<c_j\)
    • 中序遍历这棵树,只要重复会更优且重复节点总数<k即可重复。
    • 当一个点重复不会更优且这个点不会因为左子树重复时,右子树必不需要重复。
    • 当找到一个新的需要重复的节点时,可以通过在dfs时传递上一个重复的祖先的深度\(O(1)\)算对k的贡献。
    #include<bits/stdc++.h>
    using namespace std;
    
    const int N=200005;
    int l[N],r[N],fa[N],dfn[N],n,k,cnt;
    bool b[N],d[N];
    char c[N],s[N];
    void init(int u){
    	if(l[u]) init(l[u]);
    	dfn[++cnt]=u;
    	s[cnt]=c[u];
    	if(r[u]) init(r[u]);
    }
    bool dfs(int u,int dep,int lst_dep){
    	if(l[u]){
    		d[u]=dfs(l[u],dep+1,lst_dep);
    	}
    	if(d[u]){
    		lst_dep=dep;
    	}
    	else if(dep-lst_dep<=k&&b[u]){
    		d[u]=true;
    		k-=(dep-lst_dep);
    		lst_dep=dep;
    	}
    	if(r[u]&&(b[u]||d[u])){
    		d[u]|=dfs(r[u],dep+1,lst_dep);
    	}
    	return d[u];
    }
    int main(){
    	scanf("%d%d",&n,&k);
    	scanf("%s",c+1);
    	for(int i=1;i<=n;++i){
    		scanf("%d%d",&l[i],&r[i]);
    		if(l[i]) fa[l[i]]=i;
    		if(r[i]) fa[r[i]]=i;
    	}
    	init(1);
    	char ch=0;
    	for(int i=n;i;--i){
    		if(c[dfn[i]]<ch){
    			b[dfn[i]]=true;
    		}
    		if(c[dfn[i]]!=c[dfn[i-1]])
    			ch=c[dfn[i]];
    	}
    	dfs(1,1,0);
    	for(int i=1;i<=n;++i){
    		printf("%c",c[dfn[i]]);
    		if(d[dfn[i]]) printf("%c",c[dfn[i]]);
    	}
    	return 0;
    }
    
  • 相关阅读:
    Data Race Patterns in Go https://eng.uber.com/dataracepatternsingo/
    To Push or Pull Data into Kafka Connect? 3 Ways to Send Data to Kafka
    企业服务总线建设之道的探索与研究
    云音乐低代码:基于 CodeSandbox 的沙箱性能优化
    并发渲染优化:让文件树的渲染又快又稳 https://mp.weixin.qq.com/s/3yy9V5HMDWPFwEf1cyLlw
    Redis缓存异常及处理方案总结
    控制grpc 流量 GRPC 性能 管理gRPC协议示例流量
    对各种异步回调都使用try catch错误上报
    技术 Leader 的思考方式
    从Redis7.0发布看Redis的过去与未来
  • 原文地址:https://www.cnblogs.com/AireenYe/p/cfRound763.html
Copyright © 2020-2023  润新知