• [BJOI2017]Round 1


    太空飞船

    Description
    环上有 N 个整数 \(l_i\)。要把环划分成 K 段,使得每段之和的方差最小。

    HINT
    三个部分:

    1. \(K=2,N\leq10^5\).
    2. \(K=3,N\leq3\times10^5\).
    3. \(K\leq20,N\leq400\).

    Solution
    第一部分直接枚举一个断点,另一个断点三分即可.

    第二部分将环复制两遍,直接枚举一个断点,另外两个断点肯定是在总和的三分点附近.

    第三部分比较麻烦.

    把方差的式子展开发现,其实只需最小化每段之和的平方的和.

    \(f[i][j]\) 表示前 \(j\) 个数分成 \(i\) 段的最小值.

    \(f[i][j]=min\{f[i-1][k]+(s[j]-s[k])^2\}\).

    撇开 \(i\) 那一维考虑一下斜率优化.

    如果 \(k1>k2\)\(f[j]_{k_1}<f[j]_{k_2}\) 的情况:

    \(f[k_1]+(s[j]-s[k_1])^2<f[k_2]+(s[j]-s[k_2])^2\)

    \(f[k_1]+s[j]^2-2\times s[j]\times s[k_1]+s[k_1]^2<f[k_2]+s[j]^2-2\times s[j]\times s[k_2]+s[k_2]^2\)

    \(f[k_1]+s[k_1]^2-f[k_2]-s[k_2]^2<2\times s[j]\times(s[k_1]-s[k_2])\)

    \(\frac{f[k_1]+s[k_1]^2-f[k_2]-s[k_2]^2}{s[k_1]-s[k_2]}<2\times s[j]\)

    考虑队列中的情况:

    如果当前比其优的,后面也一定比其优;如果当前比其劣的,后面有可能比其优.

    \(\frac{f[k_1]+s[k_1]^2-f[k_2]-s[k_2]^2}{s[k_1]-s[k_2]}\) 维护上升序列,每次操作前弹出劣的队头,取队头为 \(k\).

    #define K 21
    #define M 401
    #define N 600001
    using namespace std;
    ll f[K][M],ans,inf; 
    int l[N],s[N],q[N],n,k,h,t;
    inline ll sqr(int x){
    	return 1ll*x*x;
    }
    inline ll g(int x){
    	return k*sqr(x)-2ll*s[n]*x;
    }
    inline ll G(int x,int i){
    	return f[i-1][x]+sqr(s[x]);
    }
    inline void Aireen(){
    	n=read();k=read();
    	for(int i=1;i<=n;++i) s[i]=l[i]=read();
    	for(int i=1;i<=n;++i) s[i]+=s[i-1];
    	if(k==2){
    		for(int i=1;i<k;++i) inf+=g(l[i]);
    		inf+=g(s[n]-s[k-1]);ans=inf;
    		for(int i=1;i<=n;++i) s[i+n]=l[i+n]=l[i];
    		for(int i=1;i<=n;++i) s[i+n]+=s[i+n-1];
    		int lef,rig,m1,m2;
    		for(int i=0;i<n;++i){
    			lef=i+1;rig=i+n-1;
    			while(lef<rig){
    				m2=(rig-lef+1)/3;m1=lef+m2;m2+=m1;
    				if(g(s[m1]-s[i])+g(s[i+n]-s[m1])<=g(s[m2]-s[i])+g(s[i+n]-s[m2])) rig=m2-1;
    				else lef=m1+1;
    			}
    			ans=min(g(s[lef]-s[i])+g(s[i+n]-s[lef]),ans);
    		}
    		printf("%lld\n",1ll*k*(ans+sqr(s[n])));
    		return;
    	}
    	if(n<=M){
    		for(int i=1;i<k;++i) inf+=sqr(l[i]);
    		inf+=sqr(s[n]-s[k-1]);ans=inf;
    		for(int x=1;x<=n;++x){
    			for(int i=1;i<=n;++i) f[1][i]=sqr(s[i]);
    			for(int i=2;i<=k;++i){
    				h=1;t=0;q[++t]=i-1;
    				for(int j=i;j<=n;++j){
    					f[i][j]=inf;
    					while(h<t&&(G(q[h+1],i)-G(q[h],i))<2ll*s[j]*(s[q[h+1]]-s[q[h]])) ++h;
    					f[i][j]=min(f[i][j],f[i-1][q[h]]+sqr(s[j]-s[q[h]]));
    					while(h<t&&(G(j,i)-G(q[t],i))*(s[q[t]]-s[q[t-1]])<(G(q[t],i)-G(q[t-1],i))*(s[j]-s[q[t]])) --t;
    					q[++t]=j;
    				}
    			}
    			ans=min(ans,f[k][n]);
    			for(int i=1;i<=n;++i)
    				l[i-1]=l[i];
    			l[n]=l[0]; 
    			for(int i=1;i<=n;++i)
    				s[i]=s[i-1]+l[i];
    		}
    		printf("%lld\n",ans*sqr(k)-1ll*k*sqr(s[n]));
    		return;
    	}
    	if(k==3){
    		for(int i=1;i<k;++i) inf+=sqr(l[i]);
    		inf+=sqr(s[n]-s[k-1]);ans=inf;
    		for(int i=1;i<=n;++i) s[i+n]=l[i+n]=l[i];
    		for(int i=1;i<=n;++i) s[i+n]+=s[i+n-1];
    		for(int i=0,j=1,y=1,x=s[n]/3,z,r;i<n;++i){
    			r=i+n;//(i,r]
    			while(j+2<r&&s[j]-s[i]<=x) ++j;
    			z=s[r]-s[j]>>1;
    			if(y<j) y=j;
    			while(y+1<r&&s[y]-s[j]<=z) ++y;
    			while(y-2>i&&s[y-1]-s[j]>=z) --y;
    			ans=min(ans,sqr(s[j]-s[i])+sqr(s[y]-s[j])+sqr(s[r]-s[y]));
    			if(y-1>i)ans=min(ans,sqr(s[j]-s[i])+sqr(s[y-1]-s[j])+sqr(s[r]-s[y-1]));
    			if(y+1<r) ans=min(ans,sqr(s[j]-s[i])+sqr(s[y+1]-s[j])+sqr(s[r]-s[y+1]));
    			if(j+1<r){
    				ans=min(ans,sqr(s[j+1]-s[i])+sqr(s[y]-s[j+1])+sqr(s[r]-s[y]));
    				if(y-1>i)ans=min(ans,sqr(s[j+1]-s[i])+sqr(s[y-1]-s[j+1])+sqr(s[r]-s[y-1]));
    				if(y<r) ans=min(ans,sqr(s[j+1]-s[i])+sqr(s[y+1]-s[j+1])+sqr(s[r]-s[y+1]));
    			}
    			if(j-1>i){
    				ans=min(ans,sqr(s[j-1]-s[i])+sqr(s[y]-s[j-1])+sqr(s[r]-s[y]));
    				if(y-1>i)ans=min(ans,sqr(s[j-1]-s[i])+sqr(s[y-1]-s[j-1])+sqr(s[r]-s[y-1]));
    				if(y+1<r) ans=min(ans,sqr(s[j-1]-s[i])+sqr(s[y+1]-s[j-1])+sqr(s[r]-s[y+1]));
    			}
    		}
    		printf("%lld\n",ans*sqr(k)-1ll*k*sqr(s[n]));
    		return;
    	}
    }
    

    神秘物质

    Description
    给定一个有 N 个原子的序列 \(e_i\)
    维护以下 4 种操作,共有 M 个操作:

    1. merge x e 当前第 x 个原子和第 x+1 个原子合并,得到能量为 e 的新原子;
    2. insert x e 在当前第 x 个原子和第 x+1 个原子之间插入一个能量为 e 的新原子;
    3. max x y 询问当前第 x 到第 y 个原子之间的任意子区间中区间极差的最大值;
    4. min x y 询问当前第 x 到第 y 个原子之间的任意子区间中区间极差的最小值。
      其中,子区间指的是长度至少是 2 的子区间。

    HINT
    \(N,M\leq10^5\).

    Solution
    可以发现,第3种操作等价于求区间最大值-区间最小值;第3种操作等价于求区间相邻两数之差的最小值.
    splay维护下标直接上.

    #define N 200005
    #define INF 1000000001
    struct Splay{
    	int c[2],f,mx,mi,di,li,ri,siz,val;
    }tr[N];
    int e[N],n,m,rt,cnt;
    inline void recnt(int u){
    	int lef=tr[u].c[0],rig=tr[u].c[1];
    	tr[u].siz=tr[lef].siz+tr[rig].siz+1;
    	tr[u].mx=tr[u].mi=tr[u].val;tr[u].di=INF;
    	if(!lef) tr[u].li=tr[u].val; 
    	else{
    		tr[u].mx=max(tr[lef].mx,tr[u].mx);
    		tr[u].mi=min(tr[lef].mi,tr[u].mi);
    		tr[u].li=tr[lef].li;
    		tr[u].di=min(tr[lef].di,tr[u].di);
    		tr[u].di=min(tr[u].di,abs(tr[lef].ri-tr[u].val));
    	}
    	if(!rig) tr[u].ri=tr[u].val; 
    	else{
    		tr[u].mx=max(tr[u].mx,tr[rig].mx);
    		tr[u].mi=min(tr[u].mi,tr[rig].mi);
    		tr[u].ri=tr[rig].ri;
    		tr[u].di=min(tr[u].di,tr[rig].di);
    		tr[u].di=min(tr[u].di,abs(tr[u].val-tr[rig].li));
    	}
    }
    inline void build(int l,int r,int f){
    	int mid=(l+r)>>1;
    	if(l<r){
    		if(l<mid) build(l,mid-1,mid);
    		if(mid<r) build(mid+1,r,mid);
    	}
    	else if(l==r){
    		tr[mid].di=INF;tr[mid].siz=1;
    		tr[mid].li=tr[mid].ri=tr[mid].mx=tr[mid].mi=e[mid];
    	}
    	tr[mid].val=e[mid];tr[mid].f=f;recnt(mid);
    	tr[f].c[mid<f?0:1]=mid;
    }
    inline int kth(int k){
    	int u=rt;
    	while(tr[u].siz-tr[tr[u].c[1]].siz!=k){
    		if(k<=tr[tr[u].c[0]].siz) u=tr[u].c[0];
    		else k-=tr[u].siz-tr[tr[u].c[1]].siz,u=tr[u].c[1];
    	}
    	return u;
    }
    inline bool son(int u){
    	return tr[tr[u].f].c[1]==u;
    }
    inline void ins_p(int f,int u,bool c){
    	tr[f].c[c]=u;tr[u].f=f;
    }
    inline void rotate(int u){
    	int f=tr[u].f;bool c=son(u);
    	if(!tr[f].f){
    		rt=u;tr[u].f=0;
    	}
    	else ins_p(tr[f].f,u,son(f));
    	ins_p(f,tr[u].c[c^1],c);
    	ins_p(u,f,c^1);
    	recnt(f);recnt(u); 
    }
    inline void splay(int u,int f){
    	while(tr[u].f!=f){
    		if(tr[tr[u].f].f==f) rotate(u);
    		else if(son(u)==son(tr[u].f)){
    			rotate(tr[u].f);rotate(u); 
    		}
    		else{
    			rotate(u);rotate(u); 
    		}
    	}
    }
    inline int near(int u,bool c){
    	if(tr[u].c[c]){
    		u=tr[u].c[c];c^=1;
    		while(tr[u].c[c])
    			u=tr[u].c[c];
    		return u;
    	}
    	while(u&&son(u)==c) u=tr[u].f;
    	return tr[u].f;
    }
    inline int select(int u,int v){
    	u=kth(u);v=kth(v);
    	u=near(u,0);v=near(v,1);
    	splay(u,0);splay(v,rt);
    	return tr[v].c[0];
    }
    inline void mx(int l,int r){
    	int u=select(l,r);
    	printf("%d\n",tr[u].mx-tr[u].mi);
    }
    inline void mi(int l,int r){
    	int u=select(l,r);
    	printf("%d\n",tr[u].di);
    }
    inline void clear(int u){
    	tr[tr[u].f].c[son(u)]=0;
    	tr[u].c[0]=tr[u].c[1]=tr[u].f=tr[u].mx=tr[u].mi=tr[u].di=tr[u].li=tr[u].ri=tr[u].siz=tr[u].val=0;
    }
    inline void del(int u,int v){
    	u=select(u,v);
    	int f=tr[u].f;clear(u);u=f;
    	while(u){
    		recnt(u);u=tr[u].f;
    	}
    }
    inline void ins(int u,int k){
    	e[++cnt]=k;build(cnt,cnt,0);
    	int x=kth(u),y=kth(u+1);
    	splay(x,0);splay(y,rt);
    	ins_p(cnt,y,1);ins_p(x,cnt,1);
    	recnt(cnt);recnt(x);
    }
    inline void merge(int u,int k){
    	del(u,u+1);ins(u-1,k);
    }
    inline void insert(int u,int k){
    	ins(u,k);
    }
    inline void Aireen(){
    	n=read();m=read();
    	cnt=n+2;e[1]=e[cnt]=INF;
    	for(int i=1;i<=n;++i) e[i+1]=read();
    	rt=(1+cnt)>>1;build(1,cnt,0);
    	char c[10];int x,y;
    	while(m--){
    		scanf("%s",&c);x=read();y=read();
    		if(c[1]=='a')/*max*/mx(x+1,y+1);
    		else if(c[1]=='i')/*min*/mi(x+1,y+1);
    		else if(c[1]=='e')/*merge*/merge(x+1,y);
    		else/*insert*/insert(x+1,y); 
    	}
    }
    

    2017-04-21 15:28:26

  • 相关阅读:
    ocx手动添加自定义消息
    ocx手动添加方法
    ocx手动添加事件
    c判断文件是否存在
    unity hub 更新之后,出现了好多问题。
    asp.net core系列 77 webapi响应压缩
    python:生成半年内的巡检日报execl
    python:selenium爬取boss网站被关小黑屋
    k8s 批量安装脚本
    sysctl: cannot stat /proc/sys/net/bridge/bridgenfcallip6tables: No such file or directory
  • 原文地址:https://www.cnblogs.com/AireenYe/p/15603063.html
Copyright © 2020-2023  润新知