• 区间dp②


    区间dp的第②篇,稍微有点难度

    关路灯

    题目描述

    某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少)。老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯。

    为了给村里节省电费,老张记录下了每盏路灯的位置和功率,他每次关灯时也都是尽快地去关,但是老张不知道怎样去关灯才能够最节省电。他每天都是在天亮时首先关掉自己所处位置的路灯,然后可以向左也可以向右去关灯。开始他以为先算一下左边路灯的总功率再算一下右边路灯的总功率,然后选择先关掉功率大的一边,再回过头来关掉另一边的路灯,而事实并非如此,因为在关的过程中适当地调头有可能会更省一些。

    现在已知老张走的速度为1m/s,每个路灯的位置(是一个整数,即距路线起点的距离,单位:m)、功率(W),老张关灯所用的时间很短而可以忽略不计。

    请你为老张编一程序来安排关灯的顺序,使从老张开始关灯时刻算起所有灯消耗电最少(灯关掉后便不再消耗电了)。

    输入输出格式

    输入格式:

    文件第一行是两个数字n(1<=n<=50,表示路灯的总数)和c(1<=c<=n老张所处位置的路灯号);

    接下来n行,每行两个数据,表示第1盏到第n盏路灯的位置和功率。数据保证路灯位置单调递增。

    输出格式:

    一个数据,即最少的功耗(单位:J,1J=1W·s)。

    输入输出样例

    输入样例:       
     5 3
    2 10
    3 20
    5 20
    6 30
    8 10
    输出样例:
    270 
    都是一段区间,因为你走过的路的灯都会顺手关掉;所以考虑区间dp

    先按顺序把灯排序,然后考虑dp[i][j]表示关掉区间[i,j]里所有灯的最小花费,但好像没法转移,应为可能我关完[i,j]里的
    灯后我在区间左端点,然后我要往右走去关掉右区间的灯,或者我在右端点,所以我不好表示走过的路程,于是可以加①维表示在
    左端点还是右端点
    dp[i][j][0/1]表示关掉区间里的灯在左/右端点的最小花费
    然后考虑转移
    dp[i][j][0]<-dp[i+1][j][0/1]
    dp[i][j][1]<-dp[i][j-1][0/1]
    然后花式转移方程,详见代码
    #include<cstdio>
    #include<cstring>
    
    using namespace std;
    
    int min(int a,int b)
    {
        return a<b?a:b;
    }
    int n,c;
    int wz[60],pw[60],tot[60];
    int dp[60][60][2];
        
    int main()
    {
        scanf("%d%d",&n,&c);
        memset(dp,120,sizeof(dp));
        for(int i=1;i<=n;i++)
        {
            scanf("%d%d",&wz[i],&pw[i]);    
            tot[i]=tot[i-1]+pw[i];    //tot前缀和数组,记录tot[i]记录从1到i的耗电量
        }
        dp[c][c][1]=0;         //初始化出生点
        dp[c][c][0]=0;
        for(int k=2;k<=n;k++)    //区间大小
        {
            for(int i=1;i+k-1<=n;i++)      ///区间左右端点
            {
                int j=i+k-1;
                dp[i][j][0]=min(dp[i+1][j][0]+(wz[i+1]-wz[i])*(tot[i]+tot[n]-tot[j]),      //从区间[i+1][j]向[i][j]宽展,距离*耗电量(脚动模拟下标)
                                dp[i+1][j][1]+(wz[j]-wz[i]) * (tot[i]+tot[n]-tot[j]));
                dp[i][j][1]=min(dp[i][j-1][0]+(wz[j]-wz[i]) * (tot[i-1]+tot[n]-tot[j-1]),
                                dp[i][j-1][1]+(wz[j]-wz[j-1])*(tot[i-1]+tot[n]-tot[j-1]));
            }
        }
        printf("%d",min(dp[1][n][0],dp[1][n][1]));
        
    }

    感觉这题还好,细心处理下表ok

    然后看下道题

    棋盘分割
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 15794   Accepted: 5609

    Description

    将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘。(每次切割都只能沿着棋盘格子的边进行)

    原棋盘上每一格有一个分值,一块矩形棋盘的总分为其所含各格分值之和。现在需要把棋盘按上述规则分割成n块矩形棋盘,并使各矩形棋盘总分的均方差最小。
    均方差,其中平均值,xi为第i块矩形棋盘的总分。
    请编程对给出的棋盘及n,求出O'的最小值。

    Input

    第1行为一个整数n(1 < n < 15)。
    第2行至第9行每行为8个小于100的非负整数,表示棋盘上相应格子的分值。每行相邻两数之间用一个空格分隔。

    Output

    仅一个数,为O'(四舍五入精确到小数点后三位)。

    Sample Input

    3
    1 1 1 1 1 1 1 3
    1 1 1 1 1 1 1 1
    1 1 1 1 1 1 1 1
    1 1 1 1 1 1 1 1
    1 1 1 1 1 1 1 1
    1 1 1 1 1 1 1 1
    1 1 1 1 1 1 1 0
    1 1 1 1 1 1 0 3

    Sample Output

    1.633
    脚动推公式,可知要是分的每个区间的平方和最小(简单的数学)

    然后发现数据很小,可以考虑dp[k][x1][y1][x2][y2]表示左上角[x1][y1]右上角[x2][y2]分了k个的时候的平方和
    然后可以发现他可以横切,也可以竖切,然后选切得其中一块;于是可以尝试写方程:
                                                            少女祈祷中......
    dp[i][x][y][x1][y1]=min(dp[i][x][y][x1][y1],
            min(dp[i-1][x][y][x1][k]+dp[0][x][k+1][x1][y1],dp[0][x][y][x1][k]+dp[i-1][x][k+1][x1][y1]));
    dp[i][x][y][x1][y1]=min(dp[i][x][y][x1][y1],
         
     min(dp[i-1][x][y][k][y1]+dp[0][k+1][y][x1][y1],dp[0][x][y][k][y1]+dp[i-1][k+1][y][x1][y1]));

    看着方程很长很乱 很油很亮很duang 其实没什么软用
    仔细分析,红字和蓝字表示竖着切拿右边还是左边,橙字和绿字表示横着切拿下面还是上面;
    然后就是一些垃圾的dp前处理
    #include <cstdio>
    #include <algorithm>
    #include <cmath>
    
    using namespace std;
    
    int dp[15][9][9][9][9];
    int sum[9][9];
    int n;int tot;
    int main()
    {
    
        scanf("%d",&n);
        for(int i=1;i<=8;++i)
        {
            for(int j=1;j<=8;++j)
            {
                int a;
                scanf("%d",&a);
                sum[i][j]=sum[i][j-1]+a;
                tot+=a;
            }
        }
        for(int i=2;i<=8;++i)
            for(int j=1;j<=8;++j)
            sum[i][j]+=sum[i-1][j];        //sum[i][j]表示以1,1到i,j的矩形大小
        for(int x=1;x<=8;++x)
            for(int y=1;y<=8;++y)
                for(int x1=1;x1<=8;++x1)
                    for(int y1=1;y1<=8;++y1) 
                     dp[0][x][y][x1][y1]=
                     (sum[x1][y1]-sum[x-1][y1]-sum[x1][y-1]+sum[x-1][y-1])
                     *(sum[x1][y1]-sum[x-1][y1]-sum[x1][y-1]+sum[x-1][y-1]);      //每个格子的值赋为自己的平方
        for(int i=1;i<n;++i)
        {
            for(int x=1;x<=8;++x)
            {
                for(int y=1;y<=8;++y)
                {
                    for(int x1=x;x1<=8;++x1)
                    {
                        for(int y1=y;y1<=8;++y1)
                        {
                            dp[i][x][y][x1][y1]=0x3f3f3f3f;
                            for(int k=y;k<y1;++k) dp[i][x][y][x1][y1]=min(dp[i][x][y][x1][y1],                  //刚才的方程
                            min(dp[i-1][x][y][x1][k]+dp[0][x][k+1][x1][y1],dp[0][x][y][x1][k]+dp[i-1][x][k+1][x1][y1]));
                            for(int k=x;k<x1;++k) dp[i][x][y][x1][y1]=min(dp[i][x][y][x1][y1],
                            min(dp[i-1][x][y][k][y1]+dp[0][k+1][y][x1][y1],dp[0][x][y][k][y1]+dp[i-1][k+1][y][x1][y1]));
                        }
                    }
                }
            }
        }
        double ans=sqrt(dp[n-1][1][1][8][8]*1.0/n-((tot*1.0)/n*(tot*1.0)/n));        //脚动解出的式子
        printf("%0.3lf",ans);
    }
        
    
    

    然后一定要多做题

     
  • 相关阅读:
    文件上传---普通文件fileupload.jar和url文件httpUrlConnection
    HttpClient学习整理
    编写更少量的代码:使用apache commons工具类库
    多线程进阶
    多线程下HashMap的死循环问题
    线程本地变量ThreadLocal源码解读
    Eclipse工作常见问题总结
    Java集合---ConcurrentHashMap原理分析
    Java集合---Arrays类源码解析
    Java集合---LinkedList源码解析
  • 原文地址:https://www.cnblogs.com/AidenPearce/p/8467998.html
Copyright © 2020-2023  润新知