• 第一周 7.10-7.16


    假装自己复活辣。

    7.10

    CF 689 D Friends and Subsequences

    二分。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <algorithm>
     4 using namespace std;
     5 typedef long long LL;
     6 const int maxn = 2e5 + 10;
     7 int n, a[maxn], b[maxn];
     8 
     9 // RMQ
    10 int M[maxn][20], m[maxn][20];
    11 void init()
    12 {
    13     for(int i = 1; i <= n; i++) M[i][0] = a[i];
    14     for(int j = 1; (1 << j) <= n; j++)
    15         for(int i = 1; i + ( 1 << j ) - 1 <= n; i++)
    16             M[i][j] = max(M[i][j-1] , M[i+(1<<j-1)][j-1]);
    17 
    18     for(int i = 1; i <= n; i++) m[i][0] = b[i];
    19     for(int j = 1; (1 << j) <= n; j++)
    20         for(int i = 1; i + ( 1 << j ) - 1 <= n; i++)
    21             m[i][j] = min(m[i][j-1] , m[i+(1<<j-1)][j-1]);
    22 }
    23 
    24 int M_query(int l, int r)
    25 {
    26     int k = 0;
    27     while( ( 1 << (k + 1) ) <= r - l + 1 ) k++;
    28     return max(M[l][k], M[r-(1<<k)+1][k]);
    29 }
    30 
    31 int m_query(int l, int r)
    32 {
    33     int k = 0;
    34     while( ( 1 << (k + 1) ) <= r - l + 1 ) k++;
    35     return min(m[l][k], m[r-(1<<k)+1][k]);
    36 }
    37 
    38 int main(void)
    39 {
    40     scanf("%d", &n);
    41     for(int i = 1; i <= n; i++) scanf("%d", a + i);
    42     for(int i = 1; i <= n; i++) scanf("%d", b + i);
    43     init();
    44 
    45     LL ans = 0LL;
    46     for(int l = 1; l <= n; l++)
    47     {
    48         int t1, t2;
    49         int L = l, R = n, mid;
    50 
    51         if(M_query(l, n) < m_query(l, n)) R = n + 1;
    52         else while(L < R)
    53         {
    54             mid = L + (R - L) / 2;
    55             if(M_query(l, mid) < m_query(l, mid)) L = mid + 1;
    56             else R = mid;
    57         }
    58         t1 = R;
    59 
    60         L = l, R = n;
    61         if(M_query(l, n) - 1 < m_query(l, n)) R = n + 1;
    62         else while(L < R)
    63         {
    64             mid = L + (R - L) / 2;
    65             if(M_query(l, mid) - 1 < m_query(l, mid)) L = mid + 1;
    66             else R = mid;
    67         }
    68         t2 = R;
    69 
    70         ans = ans + t2 - t1;
    71     }
    72 
    73     printf("%I64d
    ", ans);
    74 
    75     return 0;
    76 }
    Aguin

    7.12

    HDU 5514 Frogs

    因为每只步长为a[i]的青WA能踩到所有gcd(a[i], m)的倍数石头。

    问题转化为给n个数,求能被这n个数中至少一个整除的数之和。

    能被一个数整除的所有数之和是一个等差数列 容易计算,但是被多个数整除的数会重, 所以容斥一下。

    因为所有gcd都是m的因子,先枚举m的所有因子,容易证明1e9内因子数目不会很多的。

    比如 2^2 * 3^2 * 5 * 7 * 11 * 13 * 17 * 19 = 58198140,也就3^2 * 2^6 = 576个因子。

    容斥的过程是 求 sigma能被一个gcd整除的数 - sigma能被两个gcd整除的数 +sigma能被三个gcd整除的数 ……

    对于每个因子 算它的贡献的时候 它的所有倍数的贡献都被算过了 所以给倍数减去贡献就好了 负贡献也一样。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 using namespace std;
     6 typedef long long LL;
     7 const int maxn = 1e4 + 10;
     8 int a[maxn], f[maxn], c[maxn];
     9 
    10 int gcd(int a, int b)
    11 {
    12     return a % b ? gcd(b, a % b) : b;
    13 }
    14 
    15 int main(void)
    16 {
    17     int T;
    18     scanf("%d", &T);
    19     for(int kase = 1; kase <= T; kase++)
    20     {
    21         int n, m;
    22         scanf("%d %d", &n, &m);
    23         for(int i = 1; i <= n; i++) scanf("%d", a + i);
    24 
    25         memset(f, 0, sizeof(f));
    26         for(int i = 1; i * i <= m; i++)
    27         {
    28             if(m % i == 0)
    29             {
    30                 f[++f[0]] = i;
    31                 if(i * i != m) f[++f[0]] = m / i;
    32             }
    33         }
    34         sort(f + 1, f + 1 + f[0]);
    35 
    36         memset(c, 0, sizeof(c));
    37         for(int i = 1; i <= n; i++)
    38         {
    39             int x = gcd(a[i], m);
    40             for(int j = 1; j <= f[0]; j++)
    41                 if(f[j] % x == 0) c[j] = 1;
    42         }
    43 
    44         LL ans = 0LL;
    45         for(int i = 1; i < f[0]; i++)
    46         {
    47             ans = ans + (LL) (m - 1) / f[i] * ((m - 1) / f[i] + 1) * f[i] / 2 * c[i];
    48             for(int j = i + 1; j <= f[0]; j++)
    49                 if(f[j] % f[i] == 0) c[j] -= c[i];
    50         }
    51 
    52         printf("Case #%d: %I64d
    ", kase, ans);
    53     }
    54     return 0;
    55 }
    Aguin

    7.13

    HDU 5515 Game of Flying Circus

    嘻嘻嘻

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cmath>
     4 using namespace std;
     5 
     6 int main(void)
     7 {
     8     int t;
     9     scanf("%d", &t);
    10     for(int kase = 1; kase <= t; kase++)
    11     {
    12         double T, V1, V2;
    13         scanf("%lf %lf %lf", &T, &V1, &V2);
    14         printf("Case #%d: ", kase);
    15         if(V1 == 0) puts("No");
    16         else if(V1 >= V2) puts("Yes");
    17         else if(V1 * sqrt(2) > V2)
    18         {
    19             double tmp = V1 / V2 * V1 / V2;
    20             double a = tmp - 1, b = 600 * tmp, c = a * 90000;
    21             double x = (- b + sqrt(b * b - 4 * a * c)) / 2 / a;
    22             if((x + 600) / V1 < T + (600 - x) / V2) puts("Yes");
    23             else puts("No");
    24         }
    25         else if(V1 * 3 > V2)
    26         {
    27             double tmp = V2 / V1 * V2 / V1;
    28             double a = tmp - 1, b = 1800, c = tmp * 90000 - 810000;
    29             double x = (- b + sqrt(b * b - 4 * a * c)) / 2 / a;
    30             if((sqrt((300 - x) * (300 - x) + 90000) + 900) / V1 < T + (300 + x) / V2) puts("Yes");
    31             else puts("No");
    32         }
    33         else puts("No");
    34     }
    35     return 0;
    36 }
    Aguin

    HDU 5478 Can you find it

    嘿嘿嘿

     1 #include <iostream>
     2 #include <cstdio>
     3 using namespace std;
     4 typedef long long LL;
     5 
     6 LL qpow(LL a, LL b, LL mod)
     7 {
     8     LL ret = 1LL;
     9     while(b)
    10     {
    11         if(b & 1) ret = ret * a % mod;
    12         a = a * a % mod;
    13         b >>= 1;
    14     }
    15     return ret;
    16 }
    17 
    18 int main(void)
    19 {
    20     int kase = 0;
    21     int C, k1, b1, k2;
    22     while(~scanf("%d %d %d %d", &C, &k1, &b1, &k2))
    23     {
    24         printf("Case #%d:
    ", ++kase);
    25         int ok = 0;
    26         for(int a = 1; a < C; a++)
    27         {
    28             int b = C - qpow(a, k1 + b1, C);
    29             if(qpow(a, k1, C) == qpow(b, k2, C))
    30             {
    31                 ok = 1;
    32                 printf("%d %d
    ", a, b);
    33             }
    34         }
    35         if(!ok) puts("-1");
    36     }
    37     return 0;
    38 }
    Aguin

    7.14

    HDU 5534 Partial Tree

    高老师太神拉。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <algorithm>
     4 using namespace std;
     5 int f[2222], dp[2222];
     6 
     7 int main(void)
     8 {
     9     int T;
    10     scanf("%d", &T);
    11     while(T--)
    12     {
    13         int n;
    14         scanf("%d", &n);
    15         for(int i = 1; i < n; i++) scanf("%d", f + i);
    16         for(int i = 2; i < n; i++)
    17         {
    18             dp[i] = f[i] + (i - 2) * f[1];
    19             for(int j = 2; j <= i - j + 1; j++)
    20                 dp[i] = max(dp[i], dp[j] + dp[i-j+1]);
    21         }
    22         printf("%d
    ", dp[n-1] + 2 * f[1]);
    23     }
    24     return 0;
    25 }
    Aguin

    HDU 5492 Find a path

    The magic values are no greater than 30.

     1 #include <iostream>
     2 #include <cstdio>
     3 using namespace std;
     4 int G[31][31], dp[31][31][1801];
     5 
     6 int main(void)
     7 {
     8     int T;
     9     scanf("%d", &T);
    10     for(int kase = 1; kase <= T; kase++)
    11     {
    12         int N, M;
    13         scanf("%d %d", &N, &M);
    14         for(int i = 1; i <= N; i++)
    15             for(int j = 1; j <= M; j++)
    16                 scanf("%d", &G[i][j]);
    17 
    18         for(int i = 0; i <= N; i++)
    19             for(int j = 0; j <= M; j++)
    20                 for(int k = 0; k <= 1800; k++)
    21                     dp[i][j][k] = 1e9;
    22 
    23         dp[1][1][G[1][1]] = 0;
    24         for(int i = 1; i <= N; i++)
    25         {
    26             for(int j = 1; j <= M; j++)
    27             {
    28                 if(i == 1 && j == 1) continue;
    29                 for(int k = 0; k <= 1800; k++)
    30                 {
    31                     if(dp[i-1][j][k] != 1e9) dp[i][j][k+G[i][j]] = min(dp[i][j][k+G[i][j]], ((dp[i-1][j][k] + k * k) / (i + j - 2) + G[i][j] * G[i][j]) * (i + j - 1) - (k + G[i][j]) * (k + G[i][j]));
    32                     if(dp[i][j-1][k] != 1e9) dp[i][j][k+G[i][j]] = min(dp[i][j][k+G[i][j]], ((dp[i][j-1][k] + k * k) / (i + j - 2) + G[i][j] * G[i][j]) * (i + j - 1) - (k + G[i][j]) * (k + G[i][j]));
    33                 }
    34             }
    35         }
    36 
    37         int ans = 1e9;
    38         for(int i = 0; i <= 1800; i++) ans = min(ans, dp[N][M][i]);
    39         printf("Case #%d: %d
    ", kase, ans);
    40 
    41     }
    42     return 0;
    43 }
    Aguin
  • 相关阅读:
    进程(WINAPI),遍历并查找树状的进程信息,实现控制系统进程
    HDU 4786 Fibonacci Tree(生成树,YY乱搞)
    Linux信号通讯编程
    HDU 3635 Dragon Balls(带权并查集)
    还原数据库出现“未获得排他訪问”解决方法(杀死数据库连接的存储过程sqlserver)
    java.sql.SQLException: [Microsoft][ODBC 驱动程序管理器] 未发现数据源名称而且未指定默认驱动程序解决方法
    【C++基础 02】深拷贝和浅拷贝
    内核链接的简单使用
    I2C测试【转】
    [RK3288]PMU配置(RK808)【转】
  • 原文地址:https://www.cnblogs.com/Aguin/p/5657861.html
Copyright © 2020-2023  润新知