题目链接:http://codeforces.com/contest/906/problem/D
题意:
给你n个数,再给你l~r,求%m
题解:
一开始不会
后来查到了欧拉降幂定理:
然后就会了
这样的话,每次从左往右求ans就变成了不断求n^x%m,依次往右递归即可。
代码
#include <bits/stdc++.h> using namespace std; typedef long long ll; #define N 100010 int i,j,k,n,x,y,t,q; ll a[N],m; map <ll,ll> f; ll jisuan(ll n){ if (f.count(n))return f[n]; ll ans = n, z = n;for (ll i = 2; i * i <= n; ++i){if (n % i == 0){ans -= ans / i;while (n % i == 0) n /= i;}} if (n > 1) ans -= ans / n;return f[z] = ans; } ll Pow(ll a,ll b,ll mod){ ll ret = 1;ll fl = a >= mod; for (; b; b >>= 1){if (b & 1){ret *= a;if (ret >= mod) fl = 1, ret %= mod;}a *= a;if (a >= mod) a %= mod, fl = 1;} return ret + fl * mod; } ll solve(int l, int r,ll mod){if (l == r) return a[l];if (mod == 1) return 1;return Pow(a[l], solve(l + 1, r, jisuan(mod)), mod);} int main(){ scanf("%d%lld",&n,&m); for (int i=1;i<=n;++i)scanf("%lld",&a[i]); scanf("%d",&q); while (q--){scanf("%d%d",&x,&y);printf("%lld ",solve(x, y, m)%m);} return 0; }