• 关于记忆化搜索


    1.记忆化搜索的思想

        记忆化搜索的思想是,在搜索过程中,会有很多重复计算,如果我们能记录一些状态的答案,就可以减少重复搜索量

    2、记忆化搜索的适用范围

        根据记忆化搜索的思想,它是解决重复计算,而不是重复生成,也就是说,这些搜索必须是在搜索扩展路径的过程中分步计算的题目,也就是“搜索答案与路径相关”的题目,而不能是搜索一个路径之后才能进行计算的题目,必须要分步计算,并且搜索过程中,一个搜索结果必须可以建立在同类型问题的结果上,也就是类似于动态规划解决的那种。

    也就是说,他的问题表达,不是单纯生成一个走步方案,而是生成一个走步方案的代价等,也就是说由于利益关系,走到(x,y)点后你必须往(a,b)点走才可以得到最大利益,因此,每一次经过(x,y)点,都会向(a,b)点走,所以我们可以直接将(x,y)点的状态记录一下,然后直接回溯就可以。

    3、记忆化搜索的核心实现

         a. 首先,要通过一个表记录已经存储下的搜索结果,一般用二维数组。

         b. 在每一状态搜索的开始,如果这个位置已经访问过了,直接调用答案,回溯

        c .如果没有,则按正常方法搜索

    4、记忆化搜索是类似于动态规划的,不同的是,它是倒做的“递归式动态规划”。

    例题:

    Glory非常喜欢玩滑滑梯游戏,下面给出了一个n,m的滑道,其中的数字表示滑道的高度。Glory可以从一个点出发向下滑行,每次只能滑行到相邻的位置(上下左右)中高度严格低于当前高度的地方,不能重复划行已经滑行过的地方,但他希望在这个滑道上滑行尽量远的距离,也即是找一条最长的滑道。

    Input

    第一行输入两个数n,m代表滑梯范围行n和列m(1 <= n,m <= 100)。下面是n行,每行有m个整数,代表高度h,(0<=h<=20000)

    Output

    输出一个值,代表Glory能够在滑滑梯上面滑行的最长长度是多少

    Sample Input

    3 3
    9 1 2
    5 6 7
    8 4 3

    Sample Output

    4

    Sample Input

    4 7
    7 6 5 4 3 2 1
    1 5 1 1 1 1 1
    1 4 3 1 1 1 1
    1 5 6 7 8 1 1

    Sample Output

    7

    hint

    样例1:7->6->4->3 长度为4

    代码:

    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<algorithm>
    using namespace std;
    int n,m;
    int mp[100+10][100+10];
    int dp[100+10][100+10];
    int d[4][2]={{1,0},{0,1},{0,-1},{-1,0}};
    //每次都是以一个点为单位,判断是否搜索过,如果没有的话,往下走,,判断满足条件的下一个点是否搜索
    //过,直到下一个点搜索过,或者无路可走,就开始返回了,最先返回的应该是无路可走的那个的maxlen=1;
    //(因为当前位置也算一个长度),返回到上一步以后更新len与maxle,如果继续返回的话返回的是已经更新过的
    //maxlen并用dp数组记录一下。所以说dp数组的更新是倒着来的,每次都要记录当前位置的权值(maxlen=1); 
    int dfs(int x,int y){
        int maxlen=1,len;
        if(dp[x][y]) return dp[x][y];
        for(int i=0;i<4;i++){
            int dx=x+d[i][0];
            int dy=y+d[i][1];
            if(dx>=1&& dy>=1&&dx<=n&&dy<=m&&mp[dx][dy]<mp[x][y]){
                len = dfs(dx,dy)+1;
                maxlen=max(len,maxlen);
            }
        }
    //    cout<<x<<"++"<<y<<"_"<<maxlen<<endl;
        return dp[x][y]=maxlen;
    }
    int main(){
        memset(dp,0,sizeof(dp));
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++){
                scanf("%d",&mp[i][j]);
            }
        }
        
        int ans=0;
        for(int i=1;i<=n;i++){
            for(int j=1;j<=m;j++){
                
                dp[i][j]=dfs(i,j);
    //            cout<<i<<"+"<<j<<"_"<<dp[i][j]<<endl;
                ans=max(ans,dp[i][j]);
            }
        }
        cout<<ans<<endl;
        return 0;
    }
  • 相关阅读:
    python3+requests库框架设计03-请求重新封装
    python3+requests库框架设计02-封装日志类
    [patl2-001]紧急救援
    [patl1-046]整除光棍
    latex学习
    matlab基础功能实践
    dll注入及卸载实践
    编译原理大作业暂存
    12.24逆向工程上机作业整理
    [poj1703]Find them, Catch them(种类并查集)
  • 原文地址:https://www.cnblogs.com/Accepting/p/11269572.html
Copyright © 2020-2023  润新知