提升方法通过改变训练样本的权重,学习多个分类器(弱分类器/基分类器)并将这些分类器进行线性组合,提高分类的性能。
AdaBoost算法的特点是不改变所给的训练数据,而不断改变训练数据权值的分布,使得训练数据在基本分类器的学习中起不同的作用。通过迭代每次学习一个基分类器,在迭代过程中提高那些被前一轮分类器错误分类数据的权值,降低那些被正确分类的数据的权值,最后将基分类器的线性组合作为强分类器。其中给分类误差率小的基分类器以大的权值,给分类误差率大的基分类器以小的权值,能不断以指数速率减小训练误差,即误分类率。
AdaBoost算法是模型为加法模型、损失函数为指数函数、学习算法为前向分布算法的二分类方法。
<script>
(function(){
function setArticleH(btnReadmore,posi){
var winH = $(window).height();
var articleBox = $("div.article_content");
var artH = articleBox.height();
if(artH > winH*posi){
articleBox.css({
'height':winH*posi+'px',
'overflow':'hidden'
})
btnReadmore.click(function(){
articleBox.removeAttr("style");
$(this).parent().remove();
})
}else{
btnReadmore.parent().remove();
}
}
var btnReadmore = $("#btn-readmore");
if(btnReadmore.length>0){
if(currentUserName){
setArticleH(btnReadmore,3);
}else{
setArticleH(btnReadmore,1.2);
}
}
})()
</script>
</article>