1021 Deepest Root (25)(25 分)
A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent nodes' numbers.
Output Specification:
For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components in the graph.
Sample Input 1:
5
1 2
1 3
1 4
2 5
Sample Output 1:
3
4
5
Sample Input 2:
5
1 3
1 4
2 5
3 4
Sample Output 2:
Error: 2 components
最后一题 A得很开心
去吃饭啦
/********************** author: yomi date: 18.8.20 ps: **********************/ #include <iostream> #include <vector> #include <cstring> using namespace std; const int maxn = 10010; vector<int>g[maxn]; bool vis[maxn]; int ans[maxn]; int depth = 1, n, now; void dfs(int index) { if(vis[index] == true) return; vis[index] = true; for(int i=0; i<g[index].size(); i++){ if(!vis[g[index][i]]){ depth++; ans[now] = max(ans[now], depth); dfs(g[index][i]); depth--; } } } int main() { int u, v, cnt=1; memset(ans, 0, sizeof(ans)); memset(vis, 0, sizeof(vis)); cin >> n; for(int i=0; i<n-1; i++){ cin >> u >> v; g[u].push_back(v); g[v].push_back(u); } for(int i=1; i<=n; i++){ if(!vis[i]){ dfs(i); cnt++; } } if(cnt-1>1){ cout << "Error: " << cnt-1 << " components"; } else{ for(int i=1; i<=n; i++){ memset(vis, 0, sizeof(vis)); now = i; dfs(i); } int Max = 0; for(int i=1; i<=n; i++){ Max = max(Max, ans[i]); } for(int i=1; i<=n; i++){ if(Max == ans[i]) cout << i << endl; } } return 0; } /** Sample Input 1: 5 1 2 1 3 1 4 2 5 Sample Output 1: 3 4 5 Sample Input 2: 5 1 3 1 4 2 5 3 4 Sample Output 2: Error: 2 components **/