题意
将1~N(1<=N<=10^15)写在纸上,然后在相邻的数字间交替插入+和-,求最后的结果。例如当N为12时,答案为:+1-2+3-4+5-6+7-8+9-1+0-1+1-1+2=5。
思路
花了一上午时间调BUG……必须承认SPOJ上的好题很多~每次做都有很大收获……
我发现原来记忆化搜索的数位DP不止可以做统计,还可以做计算
。我们应该把记忆化搜索形式的数位DP理解成一种处理与各位数字有关问题的一种方法,或者也可以延伸到字符串上。
我们可以把数列在纸上写一下:
-0
+1
-2
+3
-4
+5
……
-8
+9
-1+0
-1+1
……
-1+9
-2+0
-2+1
……
-9+9
-1+0-0
+1-0+1
-1+0-2
……
+1-9+9
-2+0-0
…………
可以发现:
如果数位为偶数,那么对应位的符号都一样,并且第一个符号为负,交替改变;如果数位为奇数,那么每一位符号都是交错的,可以两两抵消,只需计算个位即可。
然后状态设计就好说了:pos、limit这些基本参数不用说。还需要一个pre记录上一位,以便数位为奇数时计算最后一位;一个sum表示各位数符号交替之和,用于数位为偶数时的计算;一个sub表示当前数位的符号(+/-);一个state表示数位是奇数还是偶数。
这里就需要注意
最重要的一点:
设计dp[][]状态时一定要使得每一个dp数组都唯一且明确对应一个区间,这样才可以只在程序开始时初始化dp数组,否则就需要在每次询问[1,N]区间前都初始化!什么意思?比如一开始时,我们会把N拆成数位存起来,而我的state表示的是当前枚举的数从左数第一个非零位的位置(即数的起始位置),以此来判断最后数位的奇偶性。那这样的state就很不明确了,因为他的意义会随着N的数位的变动而变化,我们当然可以增加一维数组表示当前N的位数,但那样就绕远了,而且空间不允许。所以我修正了state的含义:state=0表示当前奇偶不确定,即前面枚举的数位全都是0;state=1表示当前数位为奇数;state=2表示偶数。这个在第一次i!=0时就可以更新状态,详细看代码吧~
代码
[cpp]
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <string>
#include <cstring>
#include <vector>
#include <set>
#include <stack>
#include <queue>
#define MID(x,y) ((x+y)/2)
#define MEM(a,b) memset(a,b,sizeof(a))
#define REP(i, begin, m) for (int i = begin; i < begin+m; i ++)
using namespace std;
typedef long long LL;
typedef vector VI;
typedef set SETI;
typedef queue QI;
typedef stack SI;
const int oo = 0x3fffffff;
VI num;
LL dp[16][10][280][3][2];
LL dfs(int pos, int pre, int sum, int state, bool sub, bool limit){
if (pos == -1){
if (state == 1) return (pre&1)?pre:-pre;
else return sum;
}
if (!limit && ~dp[pos][pre][sum+140][state][sub]) return dp[pos][pre][sum+140][state][sub];
int end = limit?num[pos]:9; LL res = 0;
for (int i = 0; i <= end; i ++){ bool st = !state && (i == 0); int next_state = state; if (!state && i > 0){
if ((pos+1)%2==0) next_state = 2;
else next_state = 1;
}
res += dfs(pos-1, i, sub?sum-i:sum+i, next_state, st?true:sub^1, limit&&(i==end));
}
return limit?res:dp[pos][pre][sum+140][state][sub]=res;
}
LL cal(LL x){
num.clear();
LL res = 0;
if (x % 2 == 0){
LL tmp = x;
while(tmp){
num.push_back(tmp%10);
tmp /= 10;
}
for (int i = (int)num.size()-1, k = -1; i >= 0; i --, k*=-1){
res += num[i]*k;
}
x --;
}
num.clear();
while(x){
num.push_back(x%10);
x /= 10;
}
int len = (int)num.size();
return res + dfs(len-1, 0, 0, 0, true, true);
}
int main(){
LL n;
MEM(dp, -1);
while(~scanf("%lld", &n)){
if (n == 0) break;
printf("%lld
", cal(n));
}
return 0;
}
[/cpp]