• SGU 326 Perspective ★(网络流经典构图の竞赛问题)


    题意】有n(<=20)只队伍比赛, 队伍i初始得分w[i], 剩余比赛场数r[i](包括与这n只队伍以外的队伍比赛), remain[i][j]表示队伍i与队伍j剩余比赛场数, 没有平局, 问队伍1有没有可能获得这n队中的第一名(可以有并列第一). 【构图方法源点向队伍节点连流量为X的边表示该队伍最多赢X场;两队间比赛节点向汇点连流量为Y的边表示这两队间要进行Y场比赛,两队伍节点向对应比赛节点各连一条流量为Z的边表示每个队最多赢对方Z场思路】 按照上面的思路建图求出最大流,如果是满流则表示比赛可以安排,便为YES. 注意: 一、队伍同其他分区队伍的比赛可以不用管,认为他们全都输掉就可以了. 二、第一个队伍让他全赢就可以了,网络流中只需要建其他N-1个队伍的节点,比赛也是N-1个队伍之间的比赛,不需要管第一支队伍了.  
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #define MID(x,y) ((x+y)/2)
    #define mem(a,b) memset(a,b,sizeof(a))
    using namespace std;
    const int MAXV = 505;
    const int MAXE = 10005;
    const int oo = 0x3fffffff;
    struct node{
        int u, v, flow;
        int opp;
        int next;
    };
    struct Dinic{
        node arc[MAXE];
        int vn, en, head[MAXV];     //vn点个数(包括源点汇点),en边个数
        int cur[MAXV];              //当前弧
        int q[MAXV];                //bfs建层次图时的队列
        int path[MAXE], top;        //存dfs当前最短路径的栈
        int dep[MAXV];              //各节点层次
        void init(int n){
            vn = n;
            en = 0;
            mem(head, -1);
        }
        void insert_flow(int u, int v, int flow){
            arc[en].u = u;
            arc[en].v = v;
            arc[en].flow = flow;
            arc[en].opp = en + 1;
            arc[en].next = head[u];
            head[u] = en ++;
    
            arc[en].u = v;
            arc[en].v = u;
            arc[en].flow = 0;       //反向弧
            arc[en].opp = en - 1;
            arc[en].next = head[v];
            head[v] = en ++;
        }
        bool bfs(int s, int t){
            mem(dep, -1);
            int lq = 0, rq = 1;
            dep[s] = 0;
            q[lq] = s;
            while(lq < rq){
                int u = q[lq ++];
                if (u == t){
                    return true;
                }
                for (int i = head[u]; i != -1; i = arc[i].next){
                    int v = arc[i].v;
                    if (dep[v] == -1 && arc[i].flow > 0){
                        dep[v] = dep[u] + 1;
                        q[rq ++] = v;
                    }
                }
            }
            return false;
        }
        int solve(int s, int t){
            int maxflow = 0;
            while(bfs(s, t)){
                int i, j;
                for (i = 1; i <= vn; i ++)  cur[i] = head[i];
                for (i = s, top = 0;;){
                    if (i == t){
                        int mink;
                        int minflow = 0x3fffffff;
                        for (int k = 0; k < top; k ++)
                            if (minflow > arc[path[k]].flow){
                                minflow = arc[path[k]].flow;
                                mink = k;
                            }
                        for (int k = 0; k < top; k ++)
                            arc[path[k]].flow -= minflow, arc[arc[path[k]].opp].flow += minflow;
                        maxflow += minflow;
                        top = mink;		//arc[mink]这条边流量变为0, 则直接回溯到该边的起点即可(这条边将不再包含在增广路内).
                        i = arc[path[top]].u;
                    }
                    for (j = cur[i]; j != -1; cur[i] = j = arc[j].next){
                        int v = arc[j].v;
                        if (arc[j].flow && dep[v] == dep[i] + 1)
                            break;
                    }
                    if (j != -1){
                        path[top ++] = j;
                        i = arc[j].v;
                    }
                    else{
                        if (top == 0)   break;
                        dep[i] = -1;
                        i = arc[path[-- top]].u;
                    }
                }
            }
            return maxflow;
        }
    }dinic;
    int win[25];
    int remain[25][25];
    int contest;
    int con[MAXV][MAXV];        //记录i和j的比赛节点号
    int main(){
    	//freopen("test.in", "r", stdin);
    	//freopen("test.out", "w", stdout);
        int n;
        scanf("%d", &n);
        int max_win = 0;
        for (int i = 1; i <= n; i ++){
            scanf("%d", &win[i]);
            max_win = max(max_win, win[i]);
        }
        for (int i = 1; i <= n; i ++){
            int tmp;
            scanf("%d", &tmp);
            if (i == 1){
                win[1] += tmp;
            }
        }
        if (win[1] < max_win){
            puts("NO");
            return 0;
        }
        contest = 1;
        for (int i = 1; i <= n; i ++){
            for (int j = 1; j <= n; j ++){
                if (i > j){
                    con[i][j] = con[j][i] = contest ++;
                }
                scanf("%d", &remain[i][j]);
            }
        }
        int node_num = n + n*(n-1)/2;
        int sum = 0;
        dinic.init(node_num+2);
        for (int i = 2; i <= n; i ++){
            dinic.insert_flow(node_num+1, i, win[1] - win[i]);              //源点向N-1个队伍连一条边表示每支队伍最多能赢几场
        }
        for (int i = 2; i <= n; i ++){
            for (int j = i+1; j <= n; j ++){
                dinic.insert_flow(n+con[i][j], node_num+2, remain[i][j]);     //两两队伍间的比赛建一个节点,向汇点连一条边表示两个队伍将进行几场比赛
                dinic.insert_flow(i, n+con[i][j], remain[i][j]);              //i向该比赛连一条边表示i能赢几场
                dinic.insert_flow(j, n+con[i][j], remain[i][j]);              //j向该比赛连一条边表示i能赢几场
                sum += remain[i][j];
            }
        }
        if (dinic.solve(node_num+1, node_num+2) == sum){
            puts("YES");
        }
        else{
            puts("NO");
        }
    	return 0;
    }
    
     
  • 相关阅读:
    AC自动机
    HDU
    2020牛客寒假算法基础集训营3 B 牛牛的DRB迷宫II
    POJ 3784 Running Median【维护动态中位数】
    CodeForces
    HDU 2444 The Accomodation of Students【二分图最大匹配问题】
    POJ 1201 Intervals【差分约束】
    POJ 2976 Dropping tests【0/1分数规划模板】
    2019牛客暑期多校训练营(第七场)A.String【最小表示法】
    POJ 1287 Networking【kruskal模板题】
  • 原文地址:https://www.cnblogs.com/AbandonZHANG/p/4114262.html
Copyright © 2020-2023  润新知