• 梯度下降法和牛顿法的联系


    梯度下降法

    梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下降方向,所以也被称为是”最速下降法“。最速下降法越接近目标值,步长越小,前进越慢。梯度下降法的搜索迭代示意图如下图所示:

    梯度下降法的缺点:

      (1)靠近极小值时收敛速度减慢,如下图所示;

      (2)直线搜索时可能会产生一些问题;

      (3)可能会“之字形”地下降。

     

    两者的关系可以这样理解:随机梯度下降方法以损失很小的一部分精确度和增加一定数量的迭代次数为代价,换取了总体的优化效率的提升。增加的迭代次数远远小于样本的数量。

    对批量梯度下降法和随机梯度下降法的总结:

    批量梯度下降---最小化所有训练样本的损失函数,使得最终求解的是全局的最优解,即求解的参数是使得风险函数最小,但是对于大规模样本问题效率低下。

    随机梯度下降---最小化每条样本的损失函数,虽然不是每次迭代得到的损失函数都向着全局最优方向, 但是大的整体的方向是向全局最优解的,最终的结果往往是在全局最优解附近,适用于大规模训练样本情况。

    拟牛顿法

    1)牛顿法(Newton's method)

      牛顿法是一种在实数域和复数域上近似求解方程的方法。方法使用函数(x)的泰勒级数的前面几项来寻找方程(x) = 0的根。牛顿法最大的特点就在于它的收敛速度很快。

      具体步骤:

      首先,选择一个接近函数 (x)零点的 x0,计算相应的 (x0) 和切线斜率f  ' (x0)(这里f ' 表示函数 f  的导数)。然后我们计算穿过点(x0,  f  (x0)) 并且斜率为'(x0)的直线和 轴的交点的x坐标,也就是求如下方程的解:

      我们将新求得的点的 坐标命名为x1,通常x1会比x0更接近方程f  (x) = 0的解。因此我们现在可以利用x1开始下一轮迭代。迭代公式可化简为如下所示:

      已经证明,如果f  ' 是连续的,并且待求的零点x是孤立的,那么在零点x周围存在一个区域,只要初始值x0位于这个邻近区域内,那么牛顿法必定收敛。 并且,如果f  ' (x)不为0, 那么牛顿法将具有平方收敛的性能. 粗略的说,这意味着每迭代一次,牛顿法结果的有效数字将增加一倍。下图为一个牛顿法执行过程的例子。

      由于牛顿法是基于当前位置的切线来确定下一次的位置,所以牛顿法又被很形象地称为是"切线法"。牛顿法的搜索路径(二维情况)如下图所示:

      牛顿法搜索动态示例图:

     

    关于牛顿法和梯度下降法的效率对比:

      从本质上去看,牛顿法是二阶收敛,梯度下降是一阶收敛,所以牛顿法就更快。如果更通俗地说的话,比如你想找一条最短的路径走到一个盆地的最底部,梯度下降法每次只从你当前所处位置选一个坡度最大的方向走一步,牛顿法在选择方向时,不仅会考虑坡度是否够大,还会考虑你走了一步之后,坡度是否会变得更大。所以,可以说牛顿法比梯度下降法看得更远一点,能更快地走到最底部。(牛顿法目光更加长远,所以少走弯路;相对而言,梯度下降法只考虑了局部的最优,没有全局思想。)

      根据wiki上的解释,从几何上说,牛顿法就是用一个二次曲面去拟合你当前所处位置的局部曲面,而梯度下降法是用一个平面去拟合当前的局部曲面,通常情况下,二次曲面的拟合会比平面更好,所以牛顿法选择的下降路径会更符合真实的最优下降路径。

     

    注:红色的牛顿法的迭代路径,绿色的是梯度下降法的迭代路径。

    牛顿法的优缺点总结:

      优点:二阶收敛,收敛速度快;

      缺点:牛顿法是一种迭代算法,每一步都需要求解目标函数的Hessian矩阵的逆矩阵,计算比较复杂。

    拟牛顿法的本质思想是改善牛顿法每次需要求解复杂的Hessian矩阵的逆矩阵的缺陷,它使用正定矩阵来近似Hessian矩阵的逆,从而简化了运算的复杂度。

    资料

  • 相关阅读:
    第二十章 数据访问(In .net4.5) 之 使用LINQ
    第十九章 数据访问(In .net4.5) 之 处理数据
    第十八章 数据访问(In .net4.5) 之 I/O操作
    第十七章 调试及安全性(In .net4.5) 之 程序诊断
    大叔学Spring Boot笔记(14)A component required a bean of type '...Mapper' that could not be found问题解决
    大叔学Spring Boot笔记(13)Free Mybatis plugin使用
    MySQL查询结果中Duration Time和Fetch Time的区别
    大叔学Spring Boot笔记(12)Windows环境下使用bat启动和停止Java【转】
    大叔学Spring Boot笔记(11)jdk/bin目录下的不同exe文件的用途及区别【转】
    大叔学Spring Boot笔记(十)手动编译、打包并运行项目
  • 原文地址:https://www.cnblogs.com/Aaron12/p/9649223.html
Copyright © 2020-2023  润新知