• POJ 2976(01分数划分+二分)


                                                                                                  Dropping tests
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 12221   Accepted: 4273

    Description

    In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

    .

    Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

    Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

    Input

    The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ aibi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

    Output

    For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

    Sample Input

    3 1
    5 0 2
    5 1 6
    4 2
    1 2 7 9
    5 6 7 9
    0 0

    Sample Output

    83
    100

    Hint

    To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).

    Source

    题意:给你n对 a[i] b[i] 去掉k对  使得 sigms(a)/sigma(b) 最大
    后来才知道这是一道板子题
    (∑ai*xi)/(∑bi*xi)求极值问题
    我们可以化简 (∑ai*xi)-L*(∑bi*xi)=0;
    F(L)=(∑ai*xi)-L*(∑bi*xi)  由此可以得到这个一个单调递减的函数 随着L的增大而减小、
    假设我们要求的最大值L为 l;
    只有当F(L)无限接近0时  L=l;
    对于我们如何来确定这个解
    比如我们选k对  我们只有判断 这前K大的(ai-L*b[i])和是不是<0;因为这是单调递减的,F(L)<0--> L>l  F(L)>0--> L
    而我们这个题是删除k对  所以只有n-k就可以了
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstdlib>
     4 #include<cctype>
     5 #include<cmath>
     6 #include<cstring>
     7 #include<map>
     8 #include<stack>
     9 #include<set>
    10 #include<vector>
    11 #include<algorithm>
    12 #include<string.h>
    13 typedef long long ll;
    14 typedef unsigned long long LL;
    15 using namespace std;
    16 const int INF=0x3f3f3f3f;
    17 const double eps=0.0000000001;
    18 const int N=100000+10;
    19 int n,k;
    20 int a[N],b[N];
    21 double ans[N];
    22 int judge(double x){
    23     double sum=0;
    24     for(int i=0;i<n;i++){
    25         ans[i]=a[i]-x*b[i];
    26     }
    27     sort(ans,ans+n);
    28     for(int i=n-1;i>=n-k;i--)sum=sum+ans[i];
    29     if(sum>0)return 1;
    30     else
    31         return 0;
    32 }
    33 int main(){
    34     while(scanf("%d%d",&n,&k)!=EOF){
    35         if(n==0&&k==0)break;
    36         double maxx=0.0;
    37         for(int i=0;i<n;i++)scanf("%d",&a[i]);
    38         for(int i=0;i<n;i++)scanf("%d",&b[i]);
    39         k=n-k;
    40         double low=0;
    41         double high=1.0;
    42         double mid;
    43         while(low+eps<high){
    44             mid=(low+high)/2;
    45             if(judge(mid)){
    46                 low=mid;
    47             }
    48             else{
    49                high=mid;
    50             }
    51         }
    52         printf("%.0f
    ",mid*100);
    53     }
    54 }
     
    所以我们二分 L(0,1)
     
     
  • 相关阅读:
    端口查看netstat -tunpl |grep 25
    解释一下查找出文件并删除find /var/log -type f -mtime +7 -ok rm {} ;
    2021.6.2
    2021.6.1
    2021.5.31
    2021.5.30(每周总结)
    2021.5.28
    2021.5.27
    2021.5.26
    2021.5.25
  • 原文地址:https://www.cnblogs.com/Aa1039510121/p/6901727.html
Copyright © 2020-2023  润新知