• P4240 毒瘤之神的考验


    Description

    \(\mathcal{P}\text{ortal.}\)

    Solution

    首先想到要把 \(\varphi(ij)\) 拆开,这里有个公式

    \[\varphi(ij)=\dfrac{\varphi(i)\varphi(j)\gcd(i,j)}{\varphi(\gcd(i,j))} \]

    考虑证明,有

    \[\begin{aligned} \varphi(i)\varphi(j) &= i\prod\limits_{p|i,p\in \mathtt{prime}}\frac{p-1}{p}\cdot j \prod\limits_{p|j,p\in\mathtt{prime}}\frac{p-1}{p}\\ &= ij\prod\limits_{p|ij,p\in\mathtt{prime}}\frac{p-1}{p}\cdot \prod\limits_{p|\gcd(i,j),p\in\mathtt{prime}}\frac{p-1}{p} \end{aligned} \]

    也就是 \(i,j\) 的并加上 \(i,j\) 的交。 接下来进入推柿子环节

    \[\begin{aligned} \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} \varphi(ij) &= \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} \frac{\varphi(i)\varphi(j)\gcd(i,j)}{\varphi(\gcd(i,j))} \\&= \sum\limits_{d=1}^{n}\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} \frac{\varphi(i)\varphi(j)d[\gcd(i,j)=d]}{\varphi(d)} \\&= \sum\limits_{d=1}^{n}\frac{d}{\varphi(d)}\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m }\varphi(i)\varphi(j)[\gcd(i,j)=d] \\&= \sum\limits_{d=1}^{n}\frac{d}{\varphi(d)}\sum_{t=1}^{n/d}\mu(t)\cdot \sum\limits_{i=1}^{n/(dt)}\sum\limits_{j=1}^{m/(dt)}\varphi(idt)\varphi(jdt) \\&= \sum\limits_{k=1}^{n}\sum\limits_{d|k} \frac{d\cdot\mu(k/d)}{\varphi(d)} \sum\limits_{i=1}^{n/k }\varphi(ik)\sum\limits_{j=1}^{m/k }\varphi(jk) \end{aligned} \]

    \(\displaystyle f(k)=\sum\limits_{d|k} \frac{d\cdot\mu(k/d)}{\varphi(d)},g(k,n)=\sum\limits_{i=1}^{n}\varphi(ik)\),容易发现这两个函数都容易在调和级数的复杂度内预处理出来。然而 \(\mathcal O(nT)\) 仍然是不现实的。如果是 CF 我就直接上了

    考虑怎么优化,还是将优化重点放在整除分块上

    \[\sum_{i=1}^n\sum_{j=1}^m\varphi(ij)=\sum_{k=1}^nf(k)\cdot g(k,n/k)\cdot g(k,m/k) \]

    \(\displaystyle h(a,b,n)=\sum_{k=1}^nf(k)\cdot g(k,a)\cdot g(k,b)\),于是可以整除分块

    \[\sum_{i=1}^n\sum_{j=1}^m\varphi(ij)=\sum_{n/l=n/r,\ m/l=m/r}h(n/r,m/r,r)-h(n/r,m/r,l-1) \]

    问题是,预处理 \(h\) 的复杂度是很高的,这里可以考虑 根号分治 —— 设定阈值 \(B\),将 \(a,b\leqslant B\)\(h\) 预处理出来,不难发现这是 \(\mathcal O(nB^2)\) 的。当查询的时候,若 \(n/r\leqslant B\) 就直接 \(\mathcal O(1)\) 查询,否则有 \(r\leqslant n/B\),干脆不差分直接暴力算就是 \(\mathcal O(n/B)\) 的。

    复杂度 \(\mathcal O\left(n\ln n+nB^2+\left(n^{1/2}+n/B\right)T\right)\).

    块长可以用均值不等式来算,总复杂度算出来大概是 \(\mathcal O(6\cdot 10^7)\).

    Code

    # include <cstdio>
    # include <cctype>
    # define print(x,y) write(x), putchar(y)
    
    template <class T>
    inline T read(const T sample) {
        T x=0; char s; bool f=0;
        while(!isdigit(s=getchar())) f|=(s=='-');
        for(; isdigit(s); s=getchar()) x=(x<<1)+(x<<3)+(s^48);
        return f? -x: x;
    }
    template <class T>
    inline void write(T x) {
        static int writ[50], w_tp=0;
        if(x<0) putchar('-'), x=-x;
        do writ[++w_tp]=x-x/10*10, x/=10; while(x);
        while(putchar(writ[w_tp--]^48), w_tp);
    }
    
    # include <vector>
    # include <iostream>
    using namespace std;
    
    const int B = 20;
    const int maxn = 1e5+5;
    const int mod = 998244353;
    
    int inv(int x,int y=mod-2,int r=1) {
        for(; y; y>>=1, x=1ll*x*x%mod)
            if(y&1) r=1ll*r*x%mod; return r;
    }
    
    bool is[maxn];
    vector <int> g[maxn]; int h[B+1][B+1][maxn];
    int phi[maxn], mu[maxn], pc, p[maxn], f[maxn];
    
    int beelzebul(int n,int m) {
        int ans=0; if(n>m) swap(n,m);
        for(int i=1;i<=m/B+1;++i)
            ans = (ans+1ll*f[i]*g[i][n/i]%mod*g[i][m/i]%mod)%mod;
        for(int l=m/B+2, r; l<=n; l=r+1) {
            r = min(n, min(n/(n/l),m/(m/l)));
            ans = (0ll+ans+h[n/r][m/r][r]-h[n/r][m/r][l-1])%mod;
        }
        return (ans+mod)%mod;
    }
    
    int func(int i,int a,int b) {
        if(a>=g[i].size() || b>=g[i].size()) return 0;
        return 1ll*f[i]*g[i][a]%mod*g[i][b]%mod;
    }
    
    void sieve() {
        phi[1]=mu[1]=1;
        for(int i=2;i<=maxn-5;++i) {
            if(!is[i]) p[++pc]=i,
            mu[i]=-1, phi[i]=i-1;
            for(int j=1; j<=pc && i*p[j]<=maxn-5; ++j) {
                is[i*p[j]] = true, mu[i*p[j]]=-mu[i];
                if(i%p[j]==0) {
                    phi[i*p[j]] = phi[i]*p[j];
                    mu[i*p[j]]=0; break;
                } phi[i*p[j]] = phi[i]*(p[j]-1);
            }
        }
        for(int i=1;i<=maxn-5;++i) {
            const int coe = 1ll*i*inv(phi[i])%mod;
            g[i].emplace_back(0);
            for(int j=i;j<=maxn-5;j+=i)
                f[j] = (1ll*coe*mu[j/i]+f[j])%mod,
                g[i].emplace_back((g[i][j/i-1]+phi[j])%mod);
        }
        for(int a=1;a<=B;++a) for(int b=1;b<=B;++b) 
            for(int i=1;i<=maxn-5;++i) 
                h[a][b][i] = (h[a][b][i-1]+func(i,a,b))%mod;
    }
    
    int main() {
        sieve();
        for(int T=read(9); T; --T) {
            int n=read(9), m=read(9);
            print(beelzebul(n,m),'\n');
        }
        return 0;
    }
    
  • 相关阅读:
    金盾视频高级加密系统 2016S VIP 注册版 高强度视频加密工具
    Webshell管理+网站后台管理+菜刀
    易 5.2 修正版+破解+完美支持Win8/7
    易5.1破解版+汉语编程
    UltraISOPE 9.6.2.3059简体中文注册版/单文件版+软碟通
    hfs网络文件服务器 2.3
    免费开通二级域名的论坛
    周星驰电影全集+BT种子下载+高清版MKV+周星驰系列电影合集
    DJ音乐盒-专注DJ
    EXE加载皮肤DLL
  • 原文地址:https://www.cnblogs.com/AWhiteWall/p/16448866.html
Copyright © 2020-2023  润新知