( ext{Mex})
题目描述
给定长度为 (n) 的序列,有 (q) 个询问 ((l,r)),对于每个询问,你需要回答 ( ext{mex}{a_l,a_{l+1},...,a_r})。
(1le n,qle 2cdot 10^5),(0le a_ile 2cdot 10^5)。
解法
这题 (sf ET) 说至少做过两次,可是我真的毫无印象… 那么只有 —— 馍馍馍 (sf ET)!
离线
很妙的一点是用到了 ( m mex) 的删除非常简单!如果在集合中添加数则很难维护答案的变化;而删除数则只用维护删除的最小值,更大的都不可能是答案。
把所有询问塞到以左端点为下标的 vector
里。考虑先计算出左端点为 (1) 的所有答案,可以用 set
从右到左删除来维护,除此之外,再预处理出 (nxt_i) 表示在 (i) 之后下一个出现 (a_i) 的位置。
这样从 (1) 开始从左到右删除点,将 (a_i) 与右端点在 ((i,nxt_i)) 的答案取 (min) 即可。
在线
以区间为根的下标,搞 (n) 棵可持久化权值线段树。从左到右枚举根,在权值线段树内部维护某个权值 (val) 当前最大的下标。对于查询 ((l,r)),在 (r) 号根中进行二分,如果左儿子所有权值最大下标的 (min<l),说明左儿子中存在答案,往左儿子递归;反之往右儿子递归,因为值域大小 (2cdot 10^5+1) 大于序列长度 (2cdot 10^5),所以不用考虑超出的问题。
( ext{CF1422F Boring Queries})
解法
首先比较容易想到的是,将小于 (sqrt {a_i}) 的质数暴力用线段树维护指数 (max),大概是 (mathcal O(86cdot nlog n))。
关键是处理大于 (sqrt {a_i}) 的质数,也就是询问区间不同数字的积。对于此类询问我们一般会搞一个 (pre_i/nxt_i) 来表示在 (i) 之前或之后第一个权值为 (a_i) 的下标,从而去重。下面讲的三种方案也是基于此来解决的。
我会主席树!
对于询问 ((l,r)),如果 (iin[l,r]) 的 (pre_i<l),就将 (a_i) 加入贡献,否则不予处理。一个惊喜的发现是,对于 (jin [0,n]),只会有一个 (i) 满足 (pre_i=j),也即如果以 (j) 为下标可以建立主席树。
具体来说,用 (rt_i) 维护所有 (pre_jle i) 的 (j),权值线段树表示下标区间。这么一想好像也可以用树套树?最后查询就只用在 (rt_{l-1}) 中找 ([l,r]) 即可。
另:如果想用 (
m st) 表维护小于 (sqrt {a_i}) 的质数的指数,最好把它开成 char
类型的。
时间复杂度 (mathcal O(nlog n+86cdot nlog n)),空间复杂度大概在 ( ext S(nlog n+86cdot 4n))。
我会分块!
预处理整块之间的 ( m lcm)。对于散块,预处理 (pre,nxt),当落在区间之外才计算贡献。
时间复杂度 (mathcal O(nsqrt n+86cdot nlog n)),空间复杂度 ( ext S(n+86cdot 4n))。
我会归并!
把 ((pre_i,a_i)) 放在线段树的叶子节点上,再按 (pre_i) 的大小往上归并。因为一个点只会被归并 (log n) 次,所以复杂度有保障。查询的时候,将 ((l,r)) 划分成线段树上的节点,在节点的归并序列中二分最后一个 (pre<l) 的位置 (p),这个节点的贡献就是到 (p) 的前缀积。
时间复杂度 (mathcal O(q log^2 n+86cdot nlog n)),空间复杂度 ( ext S(nlog n+86cdot 4n))。
代码
代码写的是主席树,是我觉得最经济的方案。
#include <cstdio>
#define print(x,y) write(x),putchar(y)
template <class T>
inline T read(const T sample) {
T x=0; char s; bool f=0;
while((s=getchar())>'9' or s<'0')
f|=(s=='-');
while(s>='0' and s<='9')
x=(x<<1)+(x<<3)+(s^48),
s=getchar();
return f?-x:x;
}
template <class T>
inline void write(const T x) {
if(x<0) {
putchar('-'),write(-x);
return;
}
if(x>9) write(x/10);
putchar(x%10^48);
}
#include <iostream>
using namespace std;
const int mod=1e9+7,maxn=1e5+5,lim=2e5;
int n,t[maxn<<2][86],a[maxn];
int p[100],pc=-1,rt[maxn],idx;
int nxt[maxn],val[lim+5],Q[86];
int P[86][19];
bool vis[500];
struct node {
int ls,rs,mul;
} s[maxn*90];
void build(int o,int l,int r) {
if(l==r) {
a[l]=read(9);
for(int i=0;i<=pc;++i)
if(a[l]%p[i]==0) {
while(a[l]%p[i]==0)
++t[o][i],
a[l]/=p[i];
}
return;
}
int mid=l+r>>1;
build(o<<1,l,mid);
build(o<<1|1,mid+1,r);
for(int i=0;i<=pc;++i)
t[o][i]=max(t[o<<1][i],t[o<<1|1][i]);
}
void Query(int o,int l,int r,int L,int R) {
if(l>R or r<L) return;
if(l>=L and r<=R) {
for(int i=0;i<=pc;++i)
Q[i]=max(Q[i],t[o][i]);
return;
}
int mid=l+r>>1;
Query(o<<1,l,mid,L,R);
Query(o<<1|1,mid+1,r,L,R);
}
void sieve() {
for(int i=2;i<=447;++i) {
if(!vis[i]) p[++pc]=i;
for(int j=0;j<=pc and i*p[j]<=447;++j) {
vis[i*p[j]]=1;
if(i%p[j]==0) break;
}
}
}
void Build(int &o,int l,int r) {
s[o=++idx].mul=1;
if(l==r) return;
int mid=l+r>>1;
Build(s[o].ls,l,mid);
Build(s[o].rs,mid+1,r);
}
void ins(int o,int l,int r,int p,int k) {
if(l==r) return (void)(s[o].mul=k);
int mid=l+r>>1;
if(p<=mid) ins(s[o].ls,l,mid,p,k);
else ins(s[o].rs,mid+1,r,p,k);
s[o].mul=1ll*s[s[o].ls].mul*s[s[o].rs].mul%mod;
}
void modify(int &o,int fa,int l,int r,int p,int k) {
o=++idx; s[o]=s[fa];
if(l==r) return (void)(s[o].mul=k);
int mid=l+r>>1;
if(p<=mid) modify(s[o].ls,s[fa].ls,l,mid,p,k);
else modify(s[o].rs,s[fa].rs,mid+1,r,p,k);
s[o].mul=1ll*s[s[o].ls].mul*s[s[o].rs].mul%mod;
}
int ask(int o,int l,int r,int L,int R) {
if(l>R or r<L) return 1;
if(l>=L and r<=R) return s[o].mul;
int mid=l+r>>1;
return 1ll*ask(s[o].ls,l,mid,L,R)*
ask(s[o].rs,mid+1,r,L,R)%mod;
}
void init_SgTree() {
Build(rt[0],1,n);
for(int i=1;i<=n;++i) {
if(!val[a[i]])
ins(rt[0],1,n,i,a[i]);
else nxt[val[a[i]]]=i;
val[a[i]]=i;
}
for(int i=1;i<=n;++i)
if(nxt[i])
modify(rt[i],rt[i-1],1,n,nxt[i],a[i]);
else rt[i]=rt[i-1];
}
void init_pow() {
for(int i=0;i<=pc;++i) {
P[i][0]=1;
for(int j=1;j<=18;++j)
P[i][j]=1ll*P[i][j-1]*p[i]%mod;
}
}
int main() {
sieve();
n=read(9);
build(1,1,n);
int lst=0;
init_pow();
init_SgTree();
for(int q=read(9);q;--q) {
int l,r;
l=(read(9)+lst)%n+1;
r=(read(9)+lst)%n+1;
if(l>r) swap(l,r);
Query(1,1,n,l,r);
int ans=1;
for(int i=0;i<=pc;++i)
ans=1ll*ans*P[i][Q[i]]%mod,
Q[i]=0;
ans=1ll*ans*ask(rt[l-1],1,n,l,r)%mod;
print(lst=ans,'
');
}
return 0;
}
( ext{Colorful Squares})
解法
首先二分长度 (L)。从小到大枚举 (x),考虑 ([max{1,x-L},x]) 中的点,如果满足 (y) 坐标存在一段区间,里面包含的颜色种数 (ge k),(L) 就是可行的。
一段 (y) 坐标中不同的颜色数可以用线段树维护,也即区间加,区间 (max)。关键是如何计算一个点统治的区间。可以对每种颜色开一个 multiset
,查询离当前点最近的两个 (y) 值的统治区间,不让它们产生交即可。具体实现可以看代码。
总时间复杂度 (mathcal O(nlog^2 n))。这里视 (n) 与值域相等。
代码
#include <cstdio>
#define print(x,y) write(x),putchar(y)
template <class T>
inline T read(const T sample) {
T x=0; char s; bool f=0;
while((s=getchar())>'9' or s<'0')
f|=(s=='-');
while(s>='0' and s<='9')
x=(x<<1)+(x<<3)+(s^48),
s=getchar();
return f?-x:x;
}
template <class T>
inline void write(const T x) {
if(x<0) {
putchar('-'),write(-x);
return;
}
if(x>9) write(x/10);
putchar(x%10^48);
}
#include <bits/stdc++.h>
using namespace std;
const int maxs=1e5+5,maxn=250000;
int n,k;
multiset <int> s[maxn+5];
multiset <int> :: iterator it;
struct SgTree {
struct node {
int la,v;
} t[maxn+5<<2];
void build(int o,int l,int r) {
t[o].la=t[o].v=0;
if(l==r) return;
int mid=l+r>>1;
build(o<<1,l,mid);
build(o<<1|1,mid+1,r);
}
void pushDown(int o) {
if(!t[o].la) return;
t[o<<1].v+=t[o].la;
t[o<<1|1].v+=t[o].la;
t[o<<1].la+=t[o].la;
t[o<<1|1].la+=t[o].la;
t[o].la=0;
}
void modify(int o,int l,int r,int L,int R,int k) {
if(L>R or l>R or r<L) return;
if(l>=L and r<=R) {
t[o].v+=k;
t[o].la+=k;
return;
}
pushDown(o);
int mid=l+r>>1;
modify(o<<1,l,mid,L,R,k);
modify(o<<1|1,mid+1,r,L,R,k);
t[o].v=max(t[o<<1].v,t[o<<1|1].v);
}
} T;
struct pii {
int y,c;
};
vector <pii> Y[maxn+5];
bool ok(int mid) {
T.build(1,1,maxn);
for(int i=1;i<=k;++i)
s[i].clear();
for(int i=1;i<=maxn;++i) {
for(pii j:Y[i]) {
it=s[j.c].find(j.y);
if(it!=s[j.c].end()) {
s[j.c].insert(j.y);
continue;
}
s[j.c].insert(j.y);
it=s[j.c].lower_bound(j.y);
int l,r;
if(it==s[j.c].begin())
l=max(1,j.y-mid);
else {
--it;
l=max(j.y-mid,*it+1);
}
it=s[j.c].upper_bound(j.y);
if(it==s[j.c].end()) r=j.y;
else r=min(j.y,*it-mid-1);
T.modify(1,1,maxn,l,r,1);
}
if(i-mid-1>=1) {
for(pii j:Y[i-mid-1]) {
s[j.c].erase(s[j.c].find(j.y));
it=s[j.c].find(j.y);
if(it!=s[j.c].end())
continue;
it=s[j.c].lower_bound(j.y);
int l,r;
if(it==s[j.c].begin())
l=max(1,j.y-mid);
else {
--it;
l=max(j.y-mid,*it+1);
}
it=s[j.c].upper_bound(j.y);
if(it==s[j.c].end()) r=j.y;
else r=min(j.y,*it-mid-1);
T.modify(1,1,maxn,l,r,-1);
}
}
if(T.t[1].v>=k) return 1;
}
return 0;
}
int main() {
n=read(9),k=read(9);
for(int i=1;i<=n;++i) {
int x,y,z;
x=read(9),y=read(9),z=read(9);
Y[x].push_back((pii){y,z});
}
int l=0,r=maxn,mid;
while(l<r) {
int mid=l+r>>1;
if(ok(mid)) r=mid;
else l=mid+1;
}
print(l,'
');
return 0;
}