• 【16.56%】【codeforces 687B】Remainders Game


    time limit per test1 second
    memory limit per test256 megabytes
    inputstandard input
    outputstandard output
    Today Pari and Arya are playing a game called Remainders.

    Pari chooses two positive integer x and k, and tells Arya k but not x. Arya have to find the value 这里写图片描述 . There are n ancient numbers c1, c2, …, cn and Pari has to tell Arya 这里写图片描述 if Arya wants. Given k and the ancient values, tell us if Arya has a winning strategy independent of value of x or not. Formally, is it true that Arya can understand the value 这里写图片描述 for any positive integer x?

    Note, that 这里写图片描述means the remainder of x after dividing it by y.

    Input
    The first line of the input contains two integers n and k (1 ≤ n,  k ≤ 1 000 000) — the number of ancient integers and value k that is chosen by Pari.

    The second line contains n integers c1, c2, …, cn (1 ≤ ci ≤ 1 000 000).

    Output
    Print “Yes” (without quotes) if Arya has a winning strategy independent of value of x, or “No” (without quotes) otherwise.

    Examples
    input
    4 5
    2 3 5 12
    output
    Yes
    input
    2 7
    2 3
    output
    No
    Note
    In the first sample, Arya can understand 这里写图片描述 because 5 is one of the ancient numbers.

    In the second sample, Arya can’t be sure what 这里写图片描述 is. For example 1 and 7 have the same remainders after dividing by 2 and 3, but they differ in remainders after dividing by 7.

    【题解】

    题意:
    让你猜x % k 的值
    但是只告诉你k以及一系列x % ci;
    做法:
    根据中国剩余定理:
    如果知道了
    x % a;
    x % b;
    x % c;
    x % d;
    ····
    且a,b,c,d互质;
    那么x % (abcd)就可以确定了;
    那么因为要求x % k
    所以对k进行质数分解;
    各个质数肯定是互质的;
    分解成k = p1^k1*p2^k2…pn^kn的形式
    然后你还得知道这么一个东西
    如果
    a 是 b的倍数,即a %b==0
    那么
    x % a = y1
    x % b = y2
    那么y2 = y1 % b;

    x = t1*a+ y1 ···①
    x = t2*b + y2
    因为a是b的倍数
    所以①式总可以写成
    x = t1*t3*b + y1的形式
    显然y1 再对b取模就是y2了;
    回到质数分解后
    分解成k = p1^k1*p2^k2…pn^kn的形式
    我们想知道
    x % p1^k1
    x % p2^k2
    ….
    x % pn^kn
    这样我们就能知道x %k了
    根据上面的分析,我们只要在所给的ci里面找pi^ki的倍数就好了;
    如果对于所有的t∈[1..n]总有数字ci是pt^kt的倍数;
    因为如果ci是pt^kt的倍数,则x % ci知道了,相应的x%(pt^kt)按照上面的分析也能知道了->(x%ci) % (pt^kt)
    既然知道了所有的x%pt^kt
    那么就能求出x%k了;

    #include <cstdio>
    
    int n, k,cnt = 0;
    int num[10000];
    bool cover[10000] = { 0 };
    
    int main()
    {
        //freopen("F:\rush.txt", "r", stdin);
        scanf("%d%d", &n, &k);
        for (int i = 2;i <= k;i++)
            if ((k%i) == 0)
            {
                int now = 1;
                while ((k%i) == 0)
                {
                    now = now*i;
                    k /= i;
                }
                num[++cnt] = now;//存的是p1^k1..pcnt^kcnt
            }
        for (int i = 1; i <= n; i++)
        {
            int x;
            scanf("%d", &x);
            for (int j = 1; j <= cnt; j++)
                if (x % num[j] == 0)//如果是的x%pt^kt倍数,那么x%pt^kt就能求出来了
                    cover[j] = true;
        }
        for (int j = 1;j <= cnt;j++)
            if (!cover[j])
            {
                puts("NO");
                return 0;
            }
        puts("YES");
        return 0;
    }
  • 相关阅读:
    《激荡三十年》十七、国有企业改革(下)——“国退民进”
    《激荡三十年》十六、国有企业改革(中)——“抓大放小”
    《激荡三十年》十五、国有企业改革(上)——产权改革的曙光
    《激荡三十年》十四、改革深水区——整体配套体制改革
    《激荡三十年》十三、治国能臣——铁腕总理立威
    《激荡三十年》十二、中外合资——上海市长与上海大众
    《激荡三十年》十一、邓公南巡,中国再起航
    boost之thread
    七夕
    boost之mutex scoped_lock
  • 原文地址:https://www.cnblogs.com/AWCXV/p/7632136.html
Copyright © 2020-2023  润新知