• 【20.00%】【codeforces 44G】Shooting Gallery


    time limit per test5 seconds
    memory limit per test256 megabytes
    inputstandard input
    outputstandard output
    Berland amusement park shooting gallery is rightly acknowledged as one of the best in the world. Every day the country’s best shooters master their skills there and the many visitors compete in clay pigeon shooting to win decent prizes. And the head of the park has recently decided to make an online version of the shooting gallery. During the elaboration process it turned out that the program that imitates the process of shooting effectively, is needed. To formulate the requirements to the program, the shooting gallery was formally described. A 3D Cartesian system of coordinates was introduced, where the X axis ran across the gallery floor along the line, along which the shooters are located, the Y axis ran vertically along the gallery wall and the positive direction of the Z axis matched the shooting direction. Let’s call the XOY plane a shooting plane and let’s assume that all the bullets are out of the muzzles at the points of this area and fly parallel to the Z axis. Every clay pigeon can be represented as a rectangle whose sides are parallel to X and Y axes, and it has a positive z-coordinate. The distance between a clay pigeon and the shooting plane is always different for every target. The bullet hits the target if it goes through the inner area or border of the rectangle corresponding to it. When the bullet hits the target, the target falls down vertically into the crawl-space of the shooting gallery and cannot be shot at any more. The targets are tough enough, that’s why a bullet can not pierce a target all the way through and if a bullet hits a target it can’t fly on. In input the simulator program is given the arrangement of all the targets and also of all the shots in the order of their appearance. The program should determine which target was hit by which shot. If you haven’t guessed it yet, you are the one who is to write such a program.

    Input
    The first line contains an integer n (1 ≤ n ≤ 105) — the number of targets. Each of the subsequent n lines contains the description of a target. The target is described by five integers xl, xr, yl, yr, z, that determine it’s location in space (0 ≤ xl < xr ≤ 107, 0 ≤ yl < yr ≤ 107, 0 < z ≤ 107). The next line contains an integer m (1 ≤ m ≤ 105), determining the number of shots. Then in m lines shots are described. Every shot is determined by the coordinates of a bullet on the shooting plane (x, y) (0 ≤ x, y ≤ 107, the coordinates of bullets are integers). The shots are given in the order of their firing. The intervals between shots are large enough, and a target falls very quickly, that’s why assume that a falling target can not be an obstruction for all the shots following the one that hit it.

    Output
    For every shot in the single line print the number of the target which the shot has hit, or 0, if the bullet did not hit any target. The targets are numbered starting from 1 in the order in which they were given in the input data.

    Examples
    input
    2
    1 4 1 4 1
    2 5 2 6 2
    4
    0 0
    3 3
    4 5
    3 5
    output
    0
    1
    2
    0

    【题解】

    给你n个靶子;
    m个子弹;
    问每个子弹能打到哪些靶子;
    当然子弹打到靶子之后;那个靶子就会消失;
    kd-tree把子弹作为元素加进去;
    然后把每个靶子按照距离z升序排(顺序处理);
    给每个靶子找子弹(这个靶子所在的范围里面子弹的顺序最小的那个);
    然后把那个子弹从kd-tree中删掉;
    继续找就好;
    涉及到了kd-tree节点的删除;

    #include <cstdio>
    #include <algorithm>
    
    using namespace std;
    
    const int MAXN = 105000;
    const int INF = 2100000000;
    
    struct target
    {
        int mi_n[2], ma_x[2], z, n;
    };
    
    struct point
    {
        int min, n, dot, d[2],fa,l,r,ma_x[2],mi_n[2];
    };
    
    int n, m, root, now,ans[MAXN] = { 0 };
    
    target rec[MAXN];
    point t[MAXN];
    
    void input_data()
    {
        scanf("%d", &n);
        for (int i = 1; i <= n; i++)
        {
            scanf("%d%d%d%d%d", &rec[i].mi_n[0], &rec[i].ma_x[0], &rec[i].mi_n[1], &rec[i].ma_x[1], &rec[i].z);
            rec[i].n = i;
        }
        scanf("%d", &m);
        for (int i = 1; i <= m; i++)
        {
            scanf("%d%d", &t[i].d[0], &t[i].d[1]);
            t[i].n = i;
        }
    }
    
    bool cmp_1(point a, point b)
    {
        return a.d[now] < b.d[now];
    }
    
    void gengxin(int father, int son)
    {
        if (t[father].min > t[son].min)
        {
            t[father].min = t[son].min;
            t[father].dot = t[son].dot;
        }
        for (int i = 0;i <= 1;i++)
        {
            t[father].mi_n[i] = min(t[father].mi_n[i],t[son].mi_n[i]);
            t[father].ma_x[i] = max(t[father].ma_x[i],t[son].ma_x[i]);
        }
    }
    
    void up_data(int rt)
    {
        t[rt].min = t[rt].n; t[rt].dot = rt; //dot可以说是当前这个子树的编号最小的点的节点。
        if (t[rt].n == 0) //如果点已经删掉了
        {
            t[rt].min = INF;
            t[rt].dot = 0;
            t[rt].mi_n[0] = INF;
            t[rt].mi_n[1] = INF;
            t[rt].ma_x[0] = 0;
            t[rt].ma_x[1] = 0;
        }
        int l = t[rt].l, r = t[rt].r;
        if (l)
            gengxin(rt, l);
        if (r)
            gengxin(rt, r);
    }
    
    int build(int begin, int end, int fa,int fx)
    {
        int m = (begin + end) >> 1;
        now = fx;
        nth_element(t + begin, t + m, t + end + 1, cmp_1);
        t[m].fa = fa;
        for (int i = 0;i<=1;i++)
            t[m].mi_n[i] = t[m].ma_x[i] = t[m].d[i];
        if (begin < m)
            t[m].l = build(begin, m - 1, m, 1 - fx);
        if (m < end)
            t[m].r = build(m + 1, end, m, 1 - fx);
        up_data(m);
        return m;
    }
    
    bool inrange(int a,int b,int c)
    {
        return (a<=b && b <=c);
    }
    
    int query(int rt,int r)
    {
        if (!rt)
            return 0;
        if (!t[rt].dot)
            return 0;
        if (rec[r].mi_n[0] <= t[rt].mi_n[0] && t[rt].ma_x[0] <= rec[r].ma_x[0]
                && rec[r].mi_n[1] <= t[rt].mi_n[1] && t[rt].ma_x[1] <= rec[r].ma_x[1])//这个子树里面的子弹全部在靶子的范围内;
                    return t[rt].dot;
        if (rec[r].mi_n[0]>t[rt].ma_x[0] || rec[r].ma_x[0] < t[rt].mi_n[0] ||//全不在就结束
                rec[r].mi_n[1]>t[rt].ma_x[1] || rec[r].ma_x[1] < t[rt].mi_n[1])
                    return 0;
        int temp = 0;
        if ( t[rt].n!=0 && rec[r].mi_n[0] <= t[rt].d[0] && t[rt].d[0] <= rec[r].ma_x[0]//当前这个节点;
                && rec[r].mi_n[1] <= t[rt].d[1] && t[rt].d[1] <= rec[r].ma_x[1])
                    temp = rt;
        int zuo = t[rt].l,you = t[rt].r;
        int temp1 = query(zuo,r);//递归处理左右节点
        int temp2 = query(you,r);
        if (temp1 !=0)
            if (!temp)
                temp = temp1;
            else
                {
                    if (t[temp1].n<t[temp].n)//注意不是把temp赋值成t[temp1].n;
                        temp = temp1;
                }
        if (temp2 !=0)
            if (!temp)
                temp = temp2;
            else
                if (t[temp2].n < t[temp].n)
                    temp = temp2;
        return temp;
    }
    
    void adjust(int rt) //删掉一个点后调整相关点的信息
    {
        up_data(rt);
        if (rt != root)
            adjust(t[rt].fa);
    }
    
    bool cmp_2(target a, target b)
    {
        return a.z < b.z;
    }
    
    void get_ans()
    {
        root = build(1, m, 0, 0);
        sort(rec + 1, rec + 1 + n, cmp_2);
        for (int i = 1; i <= n; i++)
        {
            now = i;
            int hit = query(root, i);
            if (hit != 0)
            {
                ans[t[hit].n] = rec[i].n;
                t[hit].n = 0;
                adjust(hit);
            }
        }
    }
    
    void output_ans()
    {
        for (int i = 1; i <= m; i++)
            printf("%d
    ", ans[i]);
    }
    
    int main()
    {
        input_data();
        get_ans();
        output_ans();
        return 0;
    }
  • 相关阅读:
    知方可补不足~Sqlserver发布订阅与sql事务的关系
    基础才是重中之重~泛型类的静态构造方法可不是只执行一次呀
    EF架构~通过EF6的DbCommand拦截器来实现数据库读写分离~终结~配置的优化和事务里读写的统一
    EF架构~通过EF6的DbCommand拦截器来实现数据库读写分离~再续~添加对各只读服务器的心跳检测
    windows服务的创建、安装和调试
    Axure RP 实践.1
    实习第一天之数据绑定:<%#Eval("PartyName")%>'
    Hadoop云计算大数据书籍分享
    Android利用setLayoutParams在代码中调整布局(Margin和居中)
    TopCoder中插件的用法
  • 原文地址:https://www.cnblogs.com/AWCXV/p/7632108.html
Copyright © 2020-2023  润新知