• 最大流算法讲解


    原创路径:http://www.wutianqi.com/?p=3107

    Edmond Karp算法的大概思想:

    反复寻找源点s到汇点t之间的增广路径,若有,找出增广路径上每一段[容量-流量]的最小值delta,若无,则结束。

    在寻找增广路径时,可以用BFS来找,并且更新残留网络的值(涉及到反向边)。

    而找到delta后,则使最大流值加上delta,更新为当前的最大流值。

    (粗体表明需要掌握的概念)

    关于反向边:

    以下摘至HDOJ的课件和网上的:

    首先来看一下基本的网络流最大流模型。

    有n个点,有m条有向边,有一个点很特殊,只出不进,叫做源点,通常规定为1号点。另一个点也很特殊,只进不出,叫做汇点,通常规定为n号点。每条有向边上有两个量,容量和流量,从i到j的容量通常用c[I,j]表示,流量则通常是f[I,j]。通常可以把这些边想象成道路,流量就是这条道路的车流量,容量就是道路可承受的最大的车流量。很显然的,流量<=容量。而对于每个不是源点和汇点的点来说,可以类比的想象成没有存储功能的货物的中转站,所有”进入”他们的流量和等于所有从他本身”出去”的流量。

    把源点比作工厂的话,问题就是求从工厂最大可以发出多少货物,是不至于超过道路的容量限制,也就是,最大流。

    比如这个图。每条边旁边的数字表示它的容量。

    1
    下面我们来考虑如何求最大流。

    首先,假如所有边上的流量都没有超过容量(不大于容量),那么就把这一组流量,或者说,这个流,称为一个可行流。一个最简单的例子就是,零流,即所有的流量都是0的流。

    我们就从这个零流开始考虑,假如有这么一条路,这条路从源点开始一直一段一段的连到了汇点,并且,这条路上的每一段都满足流量<容量,注意,是严格的<,而不是<=。那么,我们一定能找到这条路上的每一段的(容量-流量)的值当中的最小值 delta。我们把这条路上每一段的流量都加上这个delta,一定可以保证这个流依然是可行流,这是显然的。

    这样我们就得到了一个更大的流,他的流量是之前的流量+delta,而这条路就叫做增广路。

    我们不断地从起点开始寻找增广路,每次都对其进行增广,直到源点和汇点不连通,也就是找不到增广路为止。当找不到增广路的时候,当前的流量就是最大流,这个结论非常重要。

    寻找增广路的时候我们可以简单的从源点开始做bfs,并不断修改这条路上的delta量,直到找到源点或者找不到增广路。

    这里要先补充一点,在程序实现的时候,我们通常只是用一个c数组来记录容量,而不记录流量,当流量+1的时候,我们可以通过容量-1来实现,以方便程序的实现。

    先来看看BFS部分的代码(C/C++实现):

    1 // 用BFS来判断从结点s到t的路径上是否还有delta
    2 // 即判断s,t之间是否还有增广路径,若有,返回1
    3 bool BFS(int s, int t)
    4 {
    5     queue<int> que;
    6     memset(pre, -1, sizeof(pre));
    7     memset(vis, falsesizeof(vis));
    8  
    9     pre[s] = s;
    10     vis[s] = true;
    11     que.push(s);
    12  
    13     int p;
    14     while(!que.empty())
    15     {
    16         p = que.front();
    17         que.pop();
    18         for(int i=1; i<=M; ++i)
    19         {
    20             if(r[p][i]>0 && !vis[i])
    21             {
    22                 pre[i] = p;
    23                 vis[i] = true;
    24                 if(i == t)  // 存在增广路径
    25                     return true;
    26                 que.push(i);
    27             }
    28         }
    29     }
    30     return false;
    31 }

    但事实上并没有这么简单,上面所说的增广路还不完整,比如说下面这个网络流模型。
    2

    我们第一次找到了1-2-3-4这条增广路,这条路上的delta值显然是1。于是我们修改后得到了下面这个流。(图中的数字是容量)

    3

    这时候(1,2)和(3,4)边上的流量都等于容量了,我们再也找不到其他的增广路了,当前的流量是1。

    但这个答案明显不是最大流,因为我们可以同时走1-2-4和1-3-4,这样可以得到流量为2的流。

    那么我们刚刚的算法问题在哪里呢?问题就在于我们没有给程序一个”后悔”的机会,应该有一个不走(2-3-4)而改走(2-4)的机制。那么如何解决这个问题呢?回溯搜索吗?那么我们的效率就上升到指数级了。

    而这个算法神奇的利用了一个叫做反向边的概念来解决这个问题。即每条边(I,j)都有一条反向边(j,i),反向边也同样有它的容量。

    我们直接来看它是如何解决的:

    在第一次找到增广路之后,在把路上每一段的容量减少delta的同时,也把每一段上的反方向的容量增加delta。即在Dec(c[x,y],delta)的同时,inc(c[y,x],delta)

    我们来看刚才的例子,在找到1-2-3-4这条增广路之后,把容量修改成如下

    4

    这时再找增广路的时候,就会找到1-3-2-4这条可增广量,即delta值为1的可增广路。将这条路增广之后,得到了最大流2。

    5

    那么,这么做为什么会是对的呢?我来通俗的解释一下吧。

    事实上,当我们第二次的增广路走3-2这条反向边的时候,就相当于把2-3这条正向边已经是用了的流量给”退”了回去,不走2-3这条路,而改走从2点出发的其他的路也就是2-4。(有人问如果这里没有2-4怎么办,这时假如没有2-4这条路的话,最终这条增广路也不会存在,因为他根本不能走到汇点)同时本来在3-4上的流量由1-3-4这条路来”接管”。而最终2-3这条路正向流量1,反向流量1,等于没有流量。

    这就是这个算法的精华部分,利用反向边,使程序有了一个后悔和改正的机会。而这个算法和我刚才给出的代码相比只多了一句话而已。

    至此,最大流Edmond-Karp算法介绍完毕。

  • 相关阅读:
    LintCode 27. 拓扑排序 DFS实现
    LintCode 155. 二叉树的最小深度
    LintCode 90. k数和 II
    LintCode 33. N皇后问题
    Oracle分组后取某列最大值的行数据
    Oracle日期范围
    Mongo可视化工具基本操作
    修改winform安装包写日志文件权限
    Winform安装包出现无法访问网络位置
    ComboBox的真实值和显示值
  • 原文地址:https://www.cnblogs.com/AWCXV/p/7632085.html
Copyright © 2020-2023  润新知