• 【hdu 3389】Game


    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 710 Accepted Submission(s): 501

    Problem Description
    Bob and Alice are playing a new game. There are n boxes which have been numbered from 1 to n. Each box is either empty or contains several cards. Bob and Alice move the cards in turn. In each turn the corresponding player should choose a non-empty box A and choose another box B that B< A && (A+B)%2=1 && (A+B)%3=0. Then, take an arbitrary number (but not zero) of cards from box A to box B. The last one who can do a legal move wins. Alice is the first player. Please predict who will win the game.

    Input
    The first line contains an integer T (T<=100) indicating the number of test cases. The first line of each test case contains an integer n (1<=n<=10000). The second line has n integers which will not be bigger than 100. The i-th integer indicates the number of cards in the i-th box.

    Output
    For each test case, print the case number and the winner’s name in a single line. Follow the format of the sample output.

    Sample Input
    2
    2
    1 2
    7
    1 3 3 2 2 1 2

    Sample Output
    Case 1: Alice
    Case 2: Bob

    【题目链接】:http://acm.hdu.edu.cn/showproblem.php?pid=3389

    【题解】

    /*
    题目所给的条件其实可以简化成A+B == 6n+3;
    也就是说(A+B)%6 == 3;
    则对于可以互相传递纸牌的两个位置x,y(x< y)
    (x+y)%6==3;
    根据同余率;
    (x%6+y%6)%6==3;
    所以设x%6为a,y%6为b;
    则可以传递纸牌的条件是
    ①a=0,b=3
    ②a=3,b=0
    ③a=1,b=2
    ④a=2,b=1
    ⑤a=4,b=5
    ⑥a=5,b=4
    假设没有③..⑥这些能够传递纸牌的情况;只考虑①和②能传递纸牌;
    则传递顺序必然是这样的(下面的数字都是下标从大到小%6后的结果)
    0->3->0->3….->0->3

    3->0->3->0….->0->3
    最后一个传递到的数字一定是数字3(因为不能传递到数字0了);
    这其实很像阶梯博弈了
    【阶梯博弈】http://blog.csdn.net/harlow_cheng/article/details/54024055
    我们只要对下标为%6为0的堆做NIM博弈就好了嘛
    即把0传递给3的过程看作是把%6==0的下标的堆的“石头”扔掉;
    (如果对方也一直在对0操作,则你的胜败肯定和0的那些堆的异或值决定的结果一样)
    如果对方对3进行了一次操作->即传递给了0,那么你就把传递给0的牌等量地传递给3
    这样又保持了0堆你是必胜的状态;且总是由你把0堆上的牌传递给3堆上的牌(或总是对方。。)
    所以只要对0堆(i%6==0)的所有牌数异或就好了->作为第一个游戏的sg函数
    ③和④的情况
    对应
    2->1->2->1->2….->2->1 (1不能再变成2了!)

    1->2->1->2->1….->2->1
    则对2堆进行nim博弈(i%6==2的堆的异或值)->作为第二个游戏的sg函数
    ④和⑤
    对应
    5->4->5->4->5….->5->4 (1不能再变成2了!)

    4->5->4->5->4….->5->4
    则对5对进行nim博弈(i%6==5的堆的异或值)->作为第三个游戏的sg函数
    把三个游戏的sg函数再异或一下;则为整个游戏的sg函数了;
    为0则先手胜,否则先手输;
    因为异或有交换律;
    所以直接异或i%6==0,2,5的堆就好了;不必按顺序真的一个一个游戏搞sg函数;
    */

    【完整代码】

    #include <bits/stdc++.h>
    using namespace std;
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define LL long long
    #define rep1(i,a,b) for (int i = a;i <= b;i++)
    #define rep2(i,a,b) for (int i = a;i >= b;i--)
    #define mp make_pair
    #define pb push_back
    #define fi first
    #define se second
    #define rei(x) scanf("%d",&x)
    #define rel(x) scanf("%I64d",&x)
    
    typedef pair<int,int> pii;
    typedef pair<LL,LL> pll;
    
    //const int MAXN = x;
    const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
    const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
    const double pi = acos(-1.0);
    
    int main()
    {
        //freopen("F:\rush.txt","r",stdin);
        int T;
        rei(T);
        rep1(ii,1,T)
        {
            int n,ans = 0;
            rei(n);
            rep1(i,1,n)
                {
                    int x;
                    rei(x);
                    if (i%6==0 || i%6==2 || i%6==5)
                        ans = ans ^ x;
                }
            if (ans==0)
                printf("Case %d: Bob
    ",ii);
            else
                printf("Case %d: Alice
    ",ii);
        }
        return 0;
    }
    
  • 相关阅读:
    EL 自定义函数
    Linux 软件安装管理
    Linux 网络环境查看命令
    Linux 用户和用户组的命令
    Linux 用户和用户组进阶命令
    Linux 用户和用户组的基本命令
    将博客搬至CSDN
    U盘做系统启动盘(PE)时的文件格式选择 HDD ZIP FDD
    STM32 的几种输入输出模式
    define 中强制类型转换 && 浮点数后面带f
  • 原文地址:https://www.cnblogs.com/AWCXV/p/7626733.html
Copyright © 2020-2023  润新知