• 【codeforces 538E】Demiurges Play Again


    【题目链接】:http://codeforces.com/problemset/problem/538/E

    【题意】

    给你一棵树;
    有两个人,分别从根节点开始,往叶子节点的方向走;
    每个人每次只能走一个单位深度的距离;
    两个人轮流进行;
    每次从深度为i的节点走到深度为i+1的节点;
    直到走到叶子节点为止;
    走到叶子节点的时候,叶子节点上的标号(1..m)就是这个游戏的结果;
    m为叶子节点个数
    你作为幕后黑手,可以任意排列叶子节点上的标号;
    (但是每个标号只能出现一次,也就是说叶子节点上的各个标号是1..n的一个排列);
    第一个人走的时候,希望结果尽可能大,第二个人走的时候,希望结果尽可能小;
    作为幕后黑手,你想知道,怎样安排叶子节点上的编号,可以使得结果最大,怎样安排,又会最小;
    输出最大,最小值即可;

    【题解】

    先考虑幕后黑手想要最大值的情况;

    cnt[x]表示以x为根节点的子树里面,有几个叶子节点;
    dpmax[x]表示第一个人走到节点x能够获得1..cnt[x]第几大的值;
    dpmin[x]表示第二个人走到节点x能够获得1..cnt[x]第几大的值;
    则有
    dpmax[x]=min(dpmin[y]);yx
    这里的思路是,第一人想要最大值,而且,幕后黑手会帮他,则肯定会把最大的cnt[y]个数字,即cnt[x]-cnt[y]+1..cnt[x]这些数字都安排在以y为根的子树的叶子节点上;
    然后我们知道,如果第二个人走到了y节点,他会取得第dpmin[y]大的数字,显然,你会想让这个dpmin[y]的值最小,这样取到的值就是最大的了;
    dpmin[x]=dpmax[y];yx
    这个地方比较难理解;
    可以这样考虑;
    我们已经知道y节点,第一个人走的时候他能在cnt[y]个叶子中获得第dpmax[y]大的叶子节点了;
    既然这样,幕后黑手就有一个策略了,就是从1..cnt[x]中取最小的cnt[y]-dpmax[y]个数字填满那个以y为根节点的子树的叶子节点上的cnt[y]-dpmax[y]个位置;
    对每个y节点都这么做;
    即把小的数字全都拿去填,留下大的数字
    然后把1..cnt[x]中没有被用到的数字填到剩下的位置就好;
    这样,就能逼迫第二个人取得尽可能大的数字了,就算他想选小一点,也没得选了,他一定是只能获得第dpmax[y]大的数字了,这是最小的情况了;
    这样,就能获得最大值了,即m-dpmax[1]+1
    (m是整棵树的叶子节点个数,也即cnt[1])



    如果幕后黑手想获得最小值;
    可以把定义改一下;
    dpmax[x]的定义,改成是第二个人第dpmax[x]的;
    dpmin[x]的定义,改成是第一个人第dpmin[x]的;
    可以发现也能用上面的转移类似地做;
    上面说的那个求和的转移的理解就变为尽量把大的数字用来填,然后剩余小的数字,逼迫那个想让结果大的人,只能选择较小的数字
    最后输出dpmin[1]就可以了;

    【Number Of WA

    1

    【反思】

    数据范围记错了;
    题的确难想…
    但感觉受益颇多
    做出来一道这样的题的快感和做出水题是不能比的;

    【完整代码】

    #include <bits/stdc++.h>
    using namespace std;
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define LL long long
    #define rep1(i,a,b) for (int i = a;i <= b;i++)
    #define rep2(i,a,b) for (int i = a;i >= b;i--)
    #define mp make_pair
    #define pb push_back
    #define fi first
    #define se second
    #define ms(x,y) memset(x,y,sizeof x)
    #define Open() freopen("D:\rush.txt","r",stdin)
    #define Close() ios::sync_with_stdio(0)
    
    typedef pair<int,int> pii;
    typedef pair<LL,LL> pll;
    
    const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
    const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
    const double pi = acos(-1.0);
    const int N = 2e5;
    
    vector <int> G[N];
    int n,dpmin[N+100],dpmax[N+100],cnt[N+100],tot;
    
    void dfs(int x){
        if (G[x].empty()){
            tot++;
            cnt[x] = 1;
            dpmin[x] = dpmax[x] = 1;
            return;
        }
        int temp = N+100,tsum = 0;
        for (int y:G[x]){
            dfs(y);
            cnt[x]+=cnt[y];
            temp = min(temp,dpmin[y]);
            tsum += dpmax[y];
        }
        dpmin[x] = tsum;
        dpmax[x] = temp;
    }
    
    int main(){
        //Open();
        //Close();
        scanf("%d",&n);
        rep1(i,1,n-1){
            int x,y;
            cin >> x >> y;
            G[x].pb(y);
        }
        dfs(1);
        printf("%d %d
    ",tot-dpmax[1]+1,dpmin[1]);
        return 0;
    }
  • 相关阅读:
    【c/c++】#pragma的用法
    【c/c++】#pragma的用法
    【matlab】matlab中 mcc、mbuild和mex命令详解
    【codecs】数据流ES、PES、TS、PS简介
    【codecs】数据流ES、PES、TS、PS简介
    【SVAC】SVAC标准简介
    【python】Python实现SMTP发送邮件
    【c】#pragma once 与#ifndef的区别与作用
    【c】#pragma once 与#ifndef的区别与作用
    【Tools/PC】如何在一台电脑上实现双屏幕显示?
  • 原文地址:https://www.cnblogs.com/AWCXV/p/7626214.html
Copyright © 2020-2023  润新知