【链接】http://hihocoder.com/problemset/problem/1564
【题意】
在这里写题意
【题解】
如下图
(上图中节点旁边的红色数字为它的权值)
从叶子节点开始考虑。
看到2的两个叶子节点3和4,它们的权值分别为3和5,那么我们就一定要把叶子节点3的权值变成5才行.
不然,我们是无法满足1到3的这条路径和1到4的这条路径一样的。
因为如果不在3号节点这个位置上加权值,而在其他的节点加权值,那么这两条路径的总权值会同时增加.(或者同时不增加);因为除了这个点之外,其他的点肯定是它们都没有经过,或者都经过了的。
(6,7和9,10这两对叶子节点做相同的操作即可)
然后,我们把最低层的叶子节点的最大权值往上传递.分别传递了5,9,13这3个权值到它们各自的父亲节点2,5,8
然后就能得到2号节点到叶子节点的路径的权值都是8,而5号节点各个到叶子节点的路径都是11,而8号节点各个到叶子节点的路径都是17
还是一样,我们想让这些路径的权值和都变成一样的话.
就得把2,5这2个点的权值都分别加上一些值,让他们到各自叶子节点的路径的权值和都是17(最小的);
根据上面的论述,可以肯定只能是在2,5,8这几个点改权值.
然后再把17往上传。。。
这样做的正确性是可以肯定的,因为我们每次往上传递的,只是该节点的各个儿子到叶子节点的路径的最长的长度.
所以最后肯定是有这么一条路径的.又不能减小,则只能变成这个路径咯。
然后我们每次加的时候,又都是按照最小的原则,且是唯一的原则,所以肯定是对的。
【错的次数】
0
【反思】
多画几张图,就能发现每次增加的点和量都是固定的这个规律的。
【代码】
#include <cstdio> #include <iostream> #include <algorithm> #include <cstring> #include <vector> #include <map> #include <queue> #include <iomanip> #include <set> #include <cstdlib> #include <cmath> using namespace std; #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define LL long long #define rep1(i,a,b) for (int i = a;i <= b;i++) #define rep2(i,a,b) for (int i = a;i >= b;i--) #define mp make_pair #define pb emplace_back #define fi first #define se second #define ld long double #define ms(x,y) memset(x,y,sizeof x) #define ri(x) scanf("%d",&x) #define rl(x) scanf("%lld",&x) #define rs(x) scanf("%s",x) #define rf(x) scnaf("%lf",&x) #define oi(x) printf("%d",x) #define ol(x) printf("%lld",x) #define oc putchar(' ') #define os(x) printf(x) #define all(x) x.begin(),x.end() #define Open() freopen("F:\rush.txt","r",stdin) #define Close() ios::sync_with_stdio(0) #define sz(x) ((int) x.size()) #define ld long double typedef pair<int, int> pii; typedef pair<LL, LL> pll; //mt19937 myrand(time(0)); //int get_rand(int n){return myrand()%n + 1;} const int dx[9] = { 0,1,-1,0,0,-1,-1,1,1 }; const int dy[9] = { 0,0,0,-1,1,-1,1,-1,1 }; const double pi = acos(-1.0); const int N = 1e5; int n, a[N + 10],fa[N+10]; vector <int> g[N + 10]; LL sum[N + 10],f[N+10],ans; void dfs(int x) { int len = sz(g[x]); rep1(i, 0, len - 1) { int y = g[x][i]; dfs(y); f[x] = max(f[x], f[y]); } rep1(i, 0, len - 1) { int y = g[x][i]; ans += f[x] - f[y]; } f[x] += a[x]; } int main() { //Open(); //Close(); ri(n); rep1(i, 1, n) ri(a[i]); rep1(i, 1, n-1) { int a, b; ri(a), ri(b); fa[b] = a; g[a].pb(b); } int root = 1; rep1(i, 1, n) if (fa[i] == 0) root = i; dfs(root); ol(ans); puts(""); return 0; }