• 【Codeforces 1106E】Lunar New Year and Red Envelopes


    【链接】 我是链接,点我呀:)
    【题意】

    给你k个红包,每个红包可以在si..ti的时间范围内拿走。 抢完红包之后你得到wi元,然后你需要在di+1时刻才能继续抢红包 时间是线性的从1..n 然后某个人可以阻止你在x时刻抢红包,然后你的时间跳过1s(-1s)直接到达x+1时刻. 这个人可以阻止你m次。 请问这个人采用最优阻止策略下,你最少抢到的金额。 (如果有多个可以抢的红包,那么抢wi最大的,如果仍然相同抢di最大的,再相同的话就无所谓了,因为选哪个都一样了)

    【题解】

    dp 设dp[i][j]表示i时刻已经用了j次阻止机会,后面能抢到的最少金额. 我们可以用sort+优先队列求出choose[i] 即表示i时刻你会选择哪一个红包(注意是排序后的红包QAQ) 那么在i时刻有两种选择 1.这个人进行干扰 那么转移到dp[i+1][j+1] 2.这个人不进行干扰 那么如果i时刻有的选 就转移到dp[a[choose[i]].d+1][j]+a[choose[i]].w 如果没得选就转移到dp[i+1][j]

    每次取最小值就好
    记得开long

    【代码】

    import java.io.*;
    import java.util.*;
    
    public class Main {
    	
    	static InputReader in;
    	static PrintWriter out;
    	
    	static class RedEnvelope{
    		int s,t,d,w,id;
    	}
    	
    	public static Comparator<RedEnvelope> cmp1 = new Comparator<Main.RedEnvelope>() {
    		@Override
    		public int compare(RedEnvelope o1, RedEnvelope o2) {
    			return o1.s-o2.s;
    		}
    	};
    	
    	public static Comparator<RedEnvelope> cmp2 = new Comparator<Main.RedEnvelope>() {
    		@Override
    		public int compare(RedEnvelope o1, RedEnvelope o2) {
    			if (o1.w==o2.w) {
    				return o2.d-o1.d;
    			}else {
    				return o2.w-o1.w;
    			}
    		}
    	};
    	
    	static int N = (int)1e5;
    	static int n,m,k;
    	static RedEnvelope a[];
    	static int choose[];
    	static PriorityQueue<RedEnvelope> pq;
    	static long dp[][];
    	
    	static long dfs(int t,int cnt) {
    		if (dp[t][cnt]!=-1) return dp[t][cnt];
    		if (t>n) return 0;
    		//打扰t时刻
    		long temp1 = (long)1e17;
    		if (cnt+1<=m) temp1 = Math.min(temp1, dfs(t+1,cnt+1));
    		
    		//不打扰
    		long temp2 = (long)1e17;
    		if (choose[t]!=-1) {
    			temp2 = Math.min(temp2,dfs(a[choose[t]].d+1,cnt)+a[choose[t]].w);
    		}else {
    			temp2 = Math.min(temp2, dfs(t+1,cnt));
    		}
    		
    		dp[t][cnt] = Math.min(temp1, temp2);
    		return dp[t][cnt];
    	}
    		
    	public static void main(String[] args) throws IOException{
    		in = new InputReader();
    		out = new PrintWriter(System.out);
    		
    		
    		//code start from here
    		a = new RedEnvelope[N+10];
    		for (int i = 1;i <= N;i++) a[i] = new RedEnvelope();
    		
    		pq = new PriorityQueue<>(cmp2);
    		choose = new int[N+10];
    		dp = new long[N+10][200+10];
    		for (int i = 0;i <= N;i++)
    			for (int j = 0;j <= 200;j++)
    					dp[i][j] = -1;
    		
    		
    		n = in.nextInt();m = in.nextInt();k = in.nextInt();
    
    		for (int i = 1;i <= k;i++) {
    			a[i].s = in.nextInt();
    			a[i].t = in.nextInt();
    			a[i].d = in.nextInt();
    			a[i].w = in.nextInt();
    		}
    		Arrays.sort(a, 1,k+1,cmp1);
    		for (int i = 1;i <= k;i++) a[i].id = i;//排完序再标号!QAQ
    		int j = 1;
    		
    		for (int i = 1;i <= n;i++) {
    			for (;j<=k;) {
    				if (a[j].s<=i) {
    					pq.add(a[j]);
    					j++;
    				}else break;
    			}
    			while (!pq.isEmpty()) {
    				RedEnvelope temp = pq.peek();
    				if (temp.t<i) {
    					pq.poll();
    					continue;
    				}
    				choose[i] = temp.id;
    				break;
    			}
    			if (pq.isEmpty()) choose[i] = -1;
    		}
    		
    		out.println(dfs(1,0));
    		out.close();
    	}
    
    	static class InputReader{
    		public BufferedReader br;
    		public StringTokenizer tokenizer;
    		
    		public InputReader() {
    			br = new BufferedReader(new InputStreamReader(System.in));
    			tokenizer = null;
    		}
    		
    		public String next(){
    			while (tokenizer==null || !tokenizer.hasMoreTokens()) {
    				try {
    					tokenizer = new StringTokenizer(br.readLine());
    				}catch(IOException e) {
    					throw new RuntimeException(e);
    				}
    			}
    			return tokenizer.nextToken();
    		}
    		
    		public int nextInt() {
    			return Integer.parseInt(next());
    		}
    	}
    }
    
  • 相关阅读:
    BZOJ3589: 动态树
    BZOJ3631: [JLOI2014]松鼠的新家
    BZOJ3307: 雨天的尾巴
    BZOJ1895: Pku3580 supermemo
    BZOJ3786: 星系探索
    BZOJ2819: Nim
    解题:POI 2009 Lyz
    解题:POI 2016 Nim z utrudnieniem
    解题:POI 2004 Bridge
    解题:POI 2018 Prawnicy
  • 原文地址:https://www.cnblogs.com/AWCXV/p/10354414.html
Copyright © 2020-2023  润新知