• HDU 3480 DP 斜率优化 Division


    把n个数分成m段,每段的值为(MAX - MIN)2,求所能划分得到的最小值。

    依然是先从小到大排个序,定义状态d(j, i)表示把前i个数划分成j段,所得到的最小值,则有状态转移方程:

    d(j, i) = min { d(j-1, k) + (ai - ak+1)2 | 0 ≤ k < i }

    设 l < k < i,且由k转移得到的状态比由l转移得到的状态更优。

    有不等式:

    整理成斜率形式:

    后面的就可以相当于套模板了,不过这里要用滚动数组优化一下空间。

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 using namespace std;
     6 
     7 const int maxn = 10000 + 10;
     8 const int maxm = 5000 + 10;
     9 const int INF = 0x3f3f3f3f;
    10 
    11 int n, m;
    12 
    13 int a[maxn];
    14 int d[2][maxn];
    15 
    16 int head, tail;
    17 int Q[maxn];
    18 
    19 int cur;
    20 
    21 int inline Y(int x) { return d[cur^1][x] + a[x+1] * a[x+1]; }
    22 
    23 int inline DY(int p, int q) { return Y(q) - Y(p); }
    24 
    25 int inline DX(int p, int q) { return a[q+1] - a[p+1]; }
    26 
    27 int main()
    28 {
    29     freopen("in.txt", "r", stdin);
    30 
    31     int T; scanf("%d", &T);
    32     for(int kase = 1; kase <= T; kase++)
    33     {
    34         scanf("%d%d", &n, &m);
    35         for(int i = 1; i <= n; i++) scanf("%d", a + i);
    36         sort(a + 1, a + 1 + n);
    37 
    38         memset(d[0], 0x3f, sizeof(d[0]));
    39         d[0][0] = 0;
    40         cur = 0;
    41         for(int i = 1; i <= m; i++)
    42         {
    43             cur ^= 1;
    44             head = tail = 0;
    45             Q[tail++] = 0;
    46             for(int j = 1; j <= n; j++)
    47             {
    48                 while(head + 1 < tail && DY(Q[head], Q[head+1]) <= DX(Q[head], Q[head+1]) * 2 * a[j]) head++;
    49                 while(head + 1 < tail && DY(Q[tail-1], j) * DX(Q[tail-2], Q[tail-1]) <= DY(Q[tail-2], Q[tail-1]) * DX(Q[tail-1], j)) tail--;
    50                 Q[tail++] = j;
    51                 d[cur][j] = d[cur^1][Q[head]] + (a[j]-a[Q[head]+1]) * (a[j]-a[Q[head]+1]);
    52             }
    53         }
    54         printf("Case %d: %d
    ", kase, d[cur][n]);
    55     }
    56 
    57     return 0;
    58 }
    代码君

    下面是四边形不等式优化的代码:

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 using namespace std;
     6 
     7 const int maxn = 10000 + 10;
     8 const int maxm = 5000 + 10;
     9 const int INF = 0x3f3f3f3f;
    10 
    11 int n, m;
    12 
    13 int a[maxn];
    14 int d[maxm][maxn], s[maxm][maxn];
    15 
    16 int main()
    17 {
    18     int T; scanf("%d", &T);
    19     for(int kase = 1; kase <= T; kase++)
    20     {
    21         scanf("%d%d", &n, &m);
    22 
    23         for(int i = 1; i <= n; i++) scanf("%d", a + i);
    24         sort(a + 1, a + 1 + n);
    25 
    26         memset(s, 0, sizeof(s));
    27         for(int i = 1; i <= m; i++)
    28         {
    29             int j;
    30             for(j = 1; j <= i; j++) d[i][j] = 0;
    31             for(; j <= n; j++) d[i][j] = INF;
    32         }
    33 
    34         for(int i = 1; i <= n; i++)
    35         {
    36             s[1][i] = 0;
    37             d[1][i] = (a[i] - a[1]) * (a[i] - a[1]);
    38         }
    39 
    40         for(int i = 2; i <= m; i++)
    41         {
    42             s[i][n+1] = n;
    43             for(int j = n; j > i; j--)
    44             {
    45                 for(int k = s[i-1][j]; k <= s[i][j+1]; k++)
    46                 {
    47                     int t = d[i-1][k] + (a[j] - a[k+1]) * (a[j] - a[k+1]);
    48                     if(t < d[i][j])
    49                     {
    50                         d[i][j] = t;
    51                         s[i][j] = k;
    52                     }
    53                 }
    54             }
    55         }
    56 
    57         printf("Case %d: %d
    ", kase, d[m][n]);
    58     }
    59 
    60     return 0;
    61 }
    代码君
  • 相关阅读:
    .netcore 通过文件流形式导出Excel,部分列可写,其它列只读实例
    C# NPOI 锁定单元格设置只读
    C# NPOI导出Excel 表格宽度自适应,支持中文
    MySQL 5.7 开启binary log(logbin)及注意事项
    springboot 添加JWT接口认证
    MySql 按姓名 排序
    .netcore3.1 访问静态文件,如图片、Excel等
    Ajax如何设置成同步请求
    项目发布到IIS远程服务器
    在Winform程序中使用Spire.Pdf实现页面添加印章处理(转)
  • 原文地址:https://www.cnblogs.com/AOQNRMGYXLMV/p/4693988.html
Copyright © 2020-2023  润新知