• 敌兵布阵 HDU


    思路:就是树状数组的模板题,利用的就是单点更新和区间求和是树状数组的强项时间复杂度为m*log(n)

    没想到自己以前把这道题当线段树的单点更新刷了。

    树状数组:

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    const int maxn = 5e4 + 10;
    int tree[maxn], n;
    void add(int k, int num)
    {
        while (k <= n)
        {
            tree[k] += num;
            k += k&-k;
        }
    }
    int sum(int k)
    {
        int sum = 0;
        while (k)
        {
            sum += tree[k];
            k -= k&-k;
        }
        return sum;
    }
    int main()
    {
        int t, x, y, k=0;
        scanf("%d", &t);
        while (t--)
        {
            memset(tree, 0, sizeof(tree));
            scanf("%d", &n);
            for (int i = 1; i <= n; ++i)
            {
                scanf("%d", &x);        add(i, x);
            }
            char num[20];
            printf("Case %d:
    ", ++k);
            while (scanf("%s", num), strcmp(num, "End") != 0)
            {
                scanf("%d%d", &x, &y);
                if (strcmp(num,"Add")==0){ add(x, y); }
                else if (strcmp(num,"Sub")==0){ add(x, -y); }
                else{ printf("%d
    ", sum(y) - sum(x-1)); }
            }
        }
    }

    线段树

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    #define MID(a,b) (a+((b-a)>>1))
    #define MAXN int(1e4)*5+5
    struct node
    {
        int l, r;
        int sum;
        int mid(){ return MID(l, r); }
    };
    
    int num[MAXN], n;
    
    struct Tree
    {
        node tree[MAXN << 2];
        void build(int L, int R, int pos)
        {
            tree[pos].l = L;    tree[pos].r = R; //表示区间
            tree[pos].sum = 0;
            if (L == R){tree[pos].sum = num[R]; return; }//到了子叶
            int mid = tree[pos].mid();
            //二分
            build(L, mid, pos<<1);
            build(mid + 1, R, pos << 1 | 1);
            tree[pos].sum = tree[pos << 1].sum + tree[pos << 1 | 1].sum;
        }
        //valu  表示加的值, ind 表示第几个军营。(在区域中的位置)
        void updata(int ind, int pos, int valu)
        {
            if (tree[pos].l == tree[pos].r)
            {
                tree[pos].sum += valu; return;        //叶节点+valu
            }
            int mid = tree[pos].mid();
            //二分查找单点位置?
            if (ind <= mid) updata(ind, pos << 1, valu);
            else updata(ind, pos << 1 | 1, valu);
            tree[pos].sum = tree[pos << 1].sum + tree[pos << 1 | 1].sum;
            //递归,覆盖上一层的sum
        }
        //查询
        int query(int L, int R, int pos)//从根节点查到符合的区间节点
        {
            if (L <= tree[pos].l&&tree[pos].r <= R) return tree[pos].sum;
            int mid = tree[pos].mid();
            int sum1 = 0, sum2 = 0;
            if (L <= mid) sum1 = query(L, R, pos << 1);
            if (R > mid) sum2 = query(L, R, pos << 1 | 1);
            return sum1 + sum2;
        }
    };
    Tree tree;
    int main()
    {
        int x, y;
        int t, n,t_case=0;
        scanf("%d", &t);
        while (t--)
        {
            char ch[20];
            scanf("%d", &n);
            printf("Case %d:
    ", ++t_case);
            for (int i = 1; i <= n; i++)
                scanf("%d", &num[i]);
            tree.build(1, n, 1);
            while (scanf("%s", ch) != EOF)
            {
                if (strcmp(ch, "End") == 0) break;
                else if (strcmp(ch,"Add")==0)
                {
                    scanf("%d%d", &x, &y);
                    tree.updata(x, 1, y);
                }
                else if (strcmp(ch, "Sub") == 0)
                {
                    scanf("%d%d", &x, &y);
                    tree.updata(x, 1, -y);
                }
                else if (strcmp(ch, "Query") == 0)
                {
                    scanf("%d%d", &x, &y);
                    printf("%d
    ", tree.query(x, y, 1));
                }
            }
        }
        return 0;
    }
  • 相关阅读:
    IntelliJ Idea的黑色主题+代码高亮
    @EqualsAndHashCode
    @NoArgsConstructor, @RequiredArgsConstructor, @AllArgsConstructor
    springcloud各种网址
    利用PowerDesigner连接Mysql数据库并逆向所有表关系图【两种方式】
    Java 异步实现的几种方式
    如何查看Linux操作系统版本
    Java中关于WeakReference和WeakHashMap的理解
    Java弱引用(WeakReference)的理解与使用
    Unchecked Exception 和 Checked Exception 比较
  • 原文地址:https://www.cnblogs.com/ALINGMAOMAO/p/10079784.html
Copyright © 2020-2023  润新知