浅谈分块:https://www.cnblogs.com/AKMer/p/10369816.html
题目传送门:https://lydsy.com/JudgeOnline/problem.php?id=2141
第一次的答案可以直接用树状数组求。
如果交换(pos_1)和(pos_2),那么显然我不需要管([1,pos_1-1])和([pos_2+1,n])。
对于([pos_1+1,pos_2-1])之间的每个数(v_i)
(v_i<v_{pos_1}),答案减一;(v_i>v_{pos_1}),答案加一;(v_i<v_{pos_2}),答案加一,(v_i>v_{pos_2}),答案减一。
对于每个块我用一个树状数组维护块内权值个数。整个的块直接查找有多少小于或者大于某个值的数的个数,零散的直接暴力扫。
时间复杂度:(O(NlogN+Msqrt{N}logN))
空间复杂度:(O(Nsqrt{n}))
代码如下:
#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std;
#define low(i) ((i)&(-(i)))
const int maxn=2e4+5;
int L[145],R[145];
int n,m,cnt,block,ans;
int tmp[maxn],v[maxn],bel[maxn];
int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
}
struct Tree_array {
int c[maxn];
void add(int pos,int num) {
for(int i=pos;i<=cnt;i+=low(i))
c[i]+=num;
}
int query(int pos) {
int res=0;
for(int i=pos;i;i-=low(i))
res+=c[i];
return res;
}
}T[145];
void check(int i,int l,int r) {
if(v[i]<v[l])ans--;
if(v[i]>v[l])ans++;
if(v[i]<v[r])ans++;
if(v[i]>v[r])ans--;
}
int main() {
n=read(),block=sqrt(n);
for(int i=1;i<=n;i++) {
v[i]=tmp[i]=read(),bel[i]=(i-1)/block+1;
if(bel[i]!=bel[i-1])R[bel[i-1]]=i-1,L[bel[i]]=i;
}R[bel[n]]=n;
sort(tmp+1,tmp+n+1);
cnt=unique(tmp+1,tmp+n+1)-tmp-1;
for(int i=1;i<=n;i++)
v[i]=lower_bound(tmp+1,tmp+cnt+1,v[i])-tmp;
for(int i=n;i;i--) {
ans+=T[0].query(v[i]-1);
T[0].add(v[i],1);
T[bel[i]].add(v[i],1);
}
printf("%d
",ans);
m=read();
while(m--) {
int l=read(),r=read();
if(r<l)swap(l,r);
if(bel[l]==bel[r]) {
for(int i=l+1;i<r;i++)
check(i,l,r);
}
else {
for(int i=l+1;i<=R[bel[l]];i++)
check(i,l,r);
for(int i=L[bel[r]];i<r;i++)
check(i,l,r);
for(int i=bel[l]+1;i<bel[r];i++) {
ans-=T[i].query(v[l]-1);
ans+=T[i].query(cnt)-T[i].query(v[l]);
ans+=T[i].query(v[r]-1);
ans-=T[i].query(cnt)-T[i].query(v[r]);
}
T[bel[l]].add(v[l],-1),T[bel[l]].add(v[r],1);
T[bel[r]].add(v[l],1),T[bel[r]].add(v[r],-1);
}
if(v[l]>v[r])ans--;
if(v[l]<v[r])ans++;
swap(v[l],v[r]);
printf("%d
",ans);
}
return 0;
}