我有优越感,我只跑了一次卷积~
推了一中午柿子:
其实就是求Ej=sigema(i<j)i qi/(i-j)^2 - sigema(j<i)i qi/(i-j)^2;
设n=5
E1= q1/(0^2) -q2/(1^2) -q3/(2^2) -q4/(3^2) -q5/(4^2)
E2= q1/(1^2) +q2/(0^2) -q3/(1^2) -q4/(2^2) -q5/(3^2)
E3= q1/(2^2) +q2/(1^2) +q3/(0^2) -q4/(1^2) -q5/(2^2)
E4= q1/(3^2) +q2/(2^2) +q3/(1^2) +q4/(0^2) -q5/(1^2)
E5= q1/(4^2) +q2/(3^2) +q3/(2^2) +q4/(1^2) +q5/(0^2)
A1~n=q1~qn B1~n=-1/((n-1)^2)~1/(0^2) B5视为0
实际上式子变成了这样
Ej=sigema(i<j)i -Ai*B(n-(j-i+1)+1) + sigema(j<i)i Ai*B(n-(i-j+1)+1);
Ej=sigema(i<j)i -Ai*B(n-j+i) + sigema(j<i)i Ai*B(n-i+j);
栗子
E1= +A1*B5 +A2*B4 +A3*B3 +A4*B2 +A5*B1
E2= -A1*B4 +A2*B5 +A3*B4 +A4*B3 +A5*B2
E3= -A1*B3 -A2*B4 +A3*B5 +A4*B4 +A5*B3
E4= -A1*B2 -A2*B3 -A3*B4 +A4*B5 +A5*B4
E5= -A1*B1 -A2*B2 -A3*B3 -A4*B4 +A5*B5
视为C6~C10 目前式子变成了这样
Cj=sigema(i<j-n)i -Ai*B(n-(j-n)+i) + sigema(j-n<i)i Ai*B(n-i+(j-n));
Cj=sigema(i<j-n)i -Ai*B(2*n-j+i) + sigema(j-n<i)i Ai*B(j-i);
令Bn~n*2=1/(0^2)~1/((n-1)^2)
那么-B(i)=B((2*n-1)-i+1)=B(2*n-i)
那 -B(2*n-j+i)=B(2*n-(2*n-j+i))=B(j-i)
Cj=sigema(i<j-n)i Ai*B(j-i) + sigema(j-n<i)i Ai*B(j-i);
C(j)=sigema(1~j-n)i A(i)*B(j-i)
C6= A1*B5 +A2*B4 +A3*B3 +A4*B2 +A5*B1
C7= A1*B6 +A2*B5 +A3*B4 +A4*B3 +A5*B2
C8= A1*B7 +A2*B6 +A3*B5 +A4*B4 +A5*B3
C9= A1*B8 +A2*B7 +A3*B6 +A4*B5 +A5*B4
C10= A1*B9 +A2*B8 +A3*B7 +A4*B6 +A5*B5
然后就FFT咯,结果模版打错了一次囧
update:我是神吧我写的是啥啊。。。我自己都不懂只会两次卷积做啊。。。。
#include<cstdio> #include<iostream> #include<cstring> #include<cstdlib> #include<algorithm> #include<cmath> using namespace std; const double pi=acos(-1.0); struct Complex { double r,i; Complex(){} Complex(double _r,double _i){r=_r, i=_i;} friend Complex operator +(Complex x,Complex y){return Complex(x.r+y.r,x.i+y.i);} friend Complex operator -(Complex x,Complex y){return Complex(x.r-y.r,x.i-y.i);} friend Complex operator *(Complex x,Complex y){return Complex(x.r*y.r-x.i*y.i,x.r*y.i+x.i*y.r);} }A[810000],B[810000],C[810000]; int R[810000]; void fft(Complex *a,int n,int op) { for(int i=0;i<n;i++) if(i<R[i])swap(a[i],a[R[i]]); for(int i=1;i<n;i*=2) { Complex wn(cos(pi/i),sin(pi*op/i)); for(int j=0;j<n;j+=(i<<1)) { Complex w(1,0); for(int k=0;k<i;k++,w=w*wn) { Complex a1=a[j+k],a2=a[j+k+i]; a[j+k] =a1+w*a2; a[j+k+i]=a1-w*a2; } } } } int n,m; void yu() { scanf("%d",&n); for(int i=1;i<=n;i++)scanf("%lf",&A[i].r); m=n*2-1; for(int i=1;i<=n;i++) { if(i==n)B[i].r=0; else B[i].r=-1.0/(double(n-i)*double(n-i)); if(i==1)B[n+i-1].r=0; else B[n+i-1].r=1.0/(double(i-1)*double(i-1)); } for(int i=1;i<=n;i++)A[i-1].r=A[i].r; for(int i=1;i<=m;i++)B[i-1].r=B[i].r; A[n].r=0;n--; B[m].r=0;m--; } int main() { yu(); int L=0,tt=n; m+=n;for(n=1;n<=m;n*=2)L++; for(int i=0;i<n;i++)R[i]=(R[i>>1]>>1)|((i&1)<<(L-1)); fft(A,n,1);fft(B,n,1); for(int i=0;i<n;i++)C[i]=A[i]*B[i]; fft(C,n,-1); for(int i=tt;i<=tt*2;i++)printf("%lf ",C[i].r/double(n)); return 0; }
#include<cstdio> #include<iostream> #include<cstring> #include<cstdlib> #include<algorithm> #include<cmath> using namespace std; const double pi=acos(-1.0); struct complex { double r,i; complex(){} complex(double R,double I){r=R,i=I;} friend complex operator +(complex x,complex y){return complex(x.r+y.r,x.i+y.i);} friend complex operator -(complex x,complex y){return complex(x.r-y.r,x.i-y.i);} friend complex operator *(complex x,complex y){return complex(x.r*y.r-x.i*y.i,x.r*y.i+y.r*x.i);} }A[410000],B[410000],C[410000]; int Re[410000]; void fft(complex *a,int n,int op) { for(int i=0;i<n;i++) if(i<Re[i])swap(a[i],a[Re[i]]); for(int i=1;i<n;i*=2) { complex wn(cos(pi/i),sin(op*pi/i)); for(int j=0;j<n;j+=(i<<1)) { complex w(1,0); for(int k=0;k<i;k++,w=w*wn) { complex t1=a[j+k],t2=a[j+k+i]*w; a[j+k]=t1+t2; a[j+k+i]=t1-t2; } } } } int n,pn; double q[110000]; void solve() { memset(A,0,sizeof(A)); memset(B,0,sizeof(B)); memset(C,0,sizeof(C)); A[0].r=q[0]; for(int i=1;i<=pn;i++) A[i].r=q[i], B[i].r=1.0/(double(i)*double(i)); fft(A,n,1),fft(B,n,1); for(int i=0;i<=n;i++)C[i]=A[i]*B[i]; fft(C,n,-1); for(int i=0;i<=n;i++)C[i].r=C[i].r/double(n); } double as[110000]; int main() { freopen("a.in","r",stdin); freopen("a.out","w",stdout); int m,L=0; scanf("%d",&n);n--,pn=n; for(int i=0;i<=n;i++)scanf("%lf",&q[i]); m=n*2;for(n=1;n<=m;n*=2)L++; for(int i=0;i<n;i++)Re[i]=(Re[i>>1]>>1)|((i&1)<<(L-1)); memset(as,0,sizeof(as)); solve(); for(int i=0;i<=pn;i++)as[i]+=C[i].r; for(int i=0;i<=pn/2;i++)swap(q[i],q[pn-i]); solve(); for(int i=0;i<=pn;i++)as[i]-=C[pn-i].r; for(int i=0;i<=pn;i++)printf("%.5lf ",as[i]); return 0; }