• bzoj5330: [Sdoi2018]反回文串


    了然自闭。话说sdoi2018两道反演真的好吗

    出门右拐%题解谢谢

    终于见到一题不是gcd的反演了。。。

    学了下大质数分解。。。注意pollard_rho随机的时候要选择一个常数c并且不再边,不然999999726000014413这种东西会让你怀疑人生

    这种题暴露我的非酋属性了啊bzoj垫底loj倒数第4

    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<cstdlib>
    #include<algorithm>
    #include<cmath>
    using namespace std;
    typedef long long LL;
    
    LL quick_mul(LL A,LL p,LL mo)
    {
        LL ret=0;
        while(p!=0)
        {
            if(p%2==1)ret=(ret+A)%mo;
            A=(A+A)%mo;p/=2;
        }
        return ret;
    }
    LL quick_pow(LL A,LL p,LL mo)
    {
        LL ret=1;
        while(p!=0)
        {
            if(p%2==1)ret=quick_mul(ret,A,mo);
            A=quick_mul(A,A,mo);p/=2;
        }
        return ret;
    }
    //.....tool.....
    
    bool ishs(LL a,LL t,LL mi,LL n)
    {
        LL d=quick_pow(a,t,n);
        LL last=d;
        for(int i=1;i<=mi;i++)
        {
            d=quick_mul(d,d,n);
            if(d==1&&last!=1&&last!=n-1)return true;
            last=d;
        }
        if(d!=1)return true;
        return false;
    }
    int prr[10]={2,3,5,7,11,13,17,19,23,29};
    bool miller_rabin(LL n)
    {
        if(n<2)return false;
        if(n==2)return true;
        for(int i=0;i<=9;i++)
        {
            if(n==prr[i])return true;
            if(n%prr[i]==0)return false;
        }
        
        LL t=n-1;int mi=0;
        while(t%2==0)t/=2,mi++;
        for(int i=1;i<=20;i++)
        {
            LL a=rand()%(n-1)+1;
            if(ishs(a,t,mi,n))return false;
        }
        return true;
    }
    //~~~~~~~~~~~~~~~~~~~~~miller_rabin~~~~~~~~~~~~~~~~~~~~~~~~
    
    LL gcd(LL a,LL b)
    {
        if(a<0)a=-a;
        return a==0?b:gcd(b%a,a);
    }
    LL rd(LL a,LL n,LL c){return (quick_mul(a,a,n)+c)%n;}
    LL pollard_rho(LL n)
    {
        LL a=rand()%n,b=a,c=rand()%n;
        LL i=1,k=2;
        while(1)
        {
            a=rd(a,n,c);
            LL d=gcd(b-a,n);
            if(d!=1&&d!=n)return d;
            if(a==b)return n;
            
            i++;
            if(i==k)b=a,k*=2;
        }
    }
    //~~~~~~~~~~~~~~~~~~~~~~~pollard_rho~~~~~~~~~~~~~~~~~~~~~~~
    
    int pr;LL prime[110];
    void get_prime(LL n)
    {
        if(n==1)return ;
        if(miller_rabin(n))
        {
            prime[++pr]=n;
            return ;
        }
        LL d=n;
        while(d>=n)
            d=pollard_rho(d);
        get_prime(d);
        get_prime(n/d);
    }
    
    //---------------------------------------------divi---------------------------------------------------------------
    
    int plen,q[110];
    LL n,m,mod,ans,p[110];
    LL qquick_pow(LL A,LL p)
    {
        LL ret=1;
        while(p!=0)
        {
            if(p%2==1)ret=ret*A%mod;
            A=A*A%mod;p/=2;
        }
        return ret;
    }
    void dfs(int k,LL d,LL pd)
    {
        if(k==plen+1)
        {
            if(d%2==1&&n/d%2==0)return ;
            LL dd=quick_mul( qquick_pow(m,(d+1)/2) , (d%2==0?d/2:d) ,mod );
            ans=(ans+quick_mul(pd,dd,mod) )%mod;
            return ;
        }
        LL pd2=pd*(1-p[k]);
        for(int i=0;i<=q[k];i++)
        {
            dfs(k+1,d,i==q[k]?pd:pd2);
            d*=p[k];
        }
    }
    
    int main()
    {
        srand(3458961);
        int T;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%lld%lld%lld",&n,&m,&mod);m%=mod;
            pr=0;get_prime(n);
            sort(prime+1,prime+pr+1);
            
            plen=1;p[1]=prime[1],q[1]=1;
            for(int i=2;i<=pr;i++)
                if(p[plen]==prime[i])q[plen]++;
                else p[++plen]=prime[i],q[plen]=1;
                
            ans=0;
            dfs(1,1,1);
            printf("%lld
    ",(ans+mod)%mod);
        }
        
        return 0;
    }
  • 相关阅读:
    【codeforces 755A】PolandBall and Hypothesis
    【codeforces 755B】PolandBall and Game
    【codeforces 755C】PolandBall and Forest
    Enhancing network controls in mandatory access control computing environments
    NPM 使用介绍
    【oracle】首次启动SQL Developer配置java.exe出错(Could not find jvm.cfg! )
    day70-oracle PLSQL_02光标
    day69-oracle 22-DBCA
    day70-oracle 12-Java调用存储过程和存储函数
    day17 16.关于sql注入与PreparedStatement介绍
  • 原文地址:https://www.cnblogs.com/AKCqhzdy/p/10222322.html
Copyright © 2020-2023  润新知