• Luogu 3371【模板】单源最短路径


    Luogu 3371【模板】单源最短路径

    第一次写博客用图论题来试一试

    接下来是正文部分

    题目描述
    如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度。
    输入输出格式
    输入格式:
    第一行包含三个整数N、M、S,分别表示点的个数、有向边的个数、出发点的编号。
    接下来M行每行包含三个整数Fi、Gi、Wi,分别表示第i条有向边的出发点、目标点和长度。
    输出格式:
    一行,包含N个用空格分隔的整数,其中第i个整数表示从点S出发到点i的最短路径长度
    (若S=i则最短路径长度为0,若从点S无法到达点i,则最短路径长度为2147483647)
    输入样例
    4 6 1
    1 2 2
    2 3 2
    2 4 1
    1 3 5
    3 4 3
    1 4 4
    输出样例
    0 2 4 3


    这道题目我是用spfa做的,所以我来说一下spfa的基本用法。

    更稳定的算法详见hl666大佬的博客

    #include<bits/stdc++.h>
    #define maxn 10000+5
    #define maxm 500000+5
    using namespace std;
    int la[maxm],ne[maxm],co[maxm],lnk[maxn],dis[maxn],tot=0,n,m,s,q[maxm*2];
    //la[],ne[],co[],lnk[]是邻接表用的数组,dis[]表示起始点到各点的距离,q[]是队列数组
    bool f[maxn];//f[i]表示i点是否在队中
    int read(){
    	char c=getchar();
    	while(c<'0'||c>'9')c=getchar();int x=0;
    	while(c>='0'&&c<='9')x=x*10+c-'0',c=getchar();
    	return x;
    }
    void add(int x,int y,int z){
    	ne[++tot]=y;co[tot]=z;la[tot]=lnk[x];lnk[x]=tot;
    }//邻接表
    void spfa(int x){
    	for(int i=1;i<=n;i++)f[i]=true;//true表示该点没有在队中
    	for(int i=1;i<=n;i++)dis[i]=23333333;//初始化
    	int h=0,t=1;q[1]=x;f[x]=false;dis[x]=0;
    	while(h<t){
    		int u=q[++h];//将队首取出
    		for(int k=lnk[u];k;k=la[k])//以点u为中转点
    		if(dis[u]+co[k]<dis[ne[k]]){
    			dis[ne[k]]=dis[u]+co[k];
    			if(f[ne[k]])q[++t]=ne[k],f[ne[k]]=false;//防止队列溢出
    		}
    		f[u]=true;
    	}
    }
    int main(){
    	n=read();m=read();s=read();
    	for(int i=1;i<=m;i++){int x=read(),y=read(),z=read();add(x,y,z);}
    	spfa(s);
    	for(int i=1;i<=n;i++)if(dis[i]>2333333)printf("2147483647 ");else printf("%d ",dis[i]);
    	return 0;
    }
    
  • 相关阅读:
    2019.8.6原型链与继承
    2019.8.2闭包,作用域
    2019.8.1正则二
    2019.7.31正则
    2019.7.29二维数组
    2019.7.28关于数组和循环的八道题
    2019.7.27数组api
    DOM
    JavaScript数组5种去重方法
    JavaScript面向对象
  • 原文地址:https://www.cnblogs.com/ADMAN/p/9157719.html
Copyright © 2020-2023  润新知