The equation
There is an equation ax + by + c = 0. Given a,b,c,x1,x2,y1,y2 you must determine, how many integer roots of this equation are satisfy to the following conditions : x1<=x<=x2, y1<=y<=y2. Integer root of this equation is a pair of integer numbers (x,y).
Input
Input contains integer numbers a,b,c,x1,x2,y1,y2 delimited by spaces and line breaks. All numbers are not greater than 108 by absolute value.
Output
Write answer to the output.
Sample Input
1 1 -3 0 4 0 4
Sample Output
4
分析:给出一个方程ax+by=-c,当c%gcd(a,b)!=0的时候方程无解。
当c%gcd(a,b)==0时,判断一下a,b为0的情况,
当a和b都不为0时,设r=gcd(a,b),先用扩展欧几里得求出ax+by=r的一组特解(x0,y0),
那么原方程的一组特解是(x0*c/r,y0*c/r),
改写成ax0+by0=-c,
设n为整数,则ax0+n*(a*b/r)+by0-n*(a*b/r)=-c,
即a(x0+n*b/r)+b(y0-n*a/r)=-c,
那么x=x0+n*b/r,y=y0-n*a/r
由题目中x1<=x<=x2,y1<=y<=y2得,
x1<=x0+n*b/r<=x2,
y1<=y0-n*a/r<=y2,
解这不等式组就可以了。
扩展gcd的y=t-a/b*y;写成y=t-y*a/b,WA了好多次=_=......
#include<cstdio> #include<algorithm> #include<cmath> #include<iostream> using namespace std; long long exgcd(long long a,long long b,long long &x,long long &y) { if(b==0) { x=1; y=0; return a; } long long r=exgcd(b,a%b,x,y); long long t=x; x=y; y=t-a/b*y;//y=t-y*a/b是错的 return r; } int main() { long long a,b,c,x1,x2,y1,y2; cin>>a>>b>>c>>x1>>x2>>y1>>y2; long long x,y; long long r=exgcd(a,b,x,y); c=-c; if(a==0||b==0) { if(a==0&&b==0) { if(c==0) printf("%lld ",(x2-x1+1)*(y2-y1+1)); else printf("0 "); } else if(a==0) { if(c%b==0&&c/b>=y1&&c/b<=y2) printf("%lld ",x2-x1+1); else printf("0 "); } else { if(c%a==0&&c/a>=x1&&c/a<=x2) printf("%lld ",y2-y1+1); else printf("0 "); } return 0; } if(c%r) printf("0 "); else { long long t=c/r; x*=t;y*=t; long long k=b/r; double L1,R1; if(k>0) { L1=(double)(x1-x)/(double)k; R1=(double)(x2-x)/(double)k; } else { L1=(double)(x2-x)/(double)k; R1=(double)(x1-x)/(double)k; } k=a/r; double L2,R2; if(k>0) { L2=(double)(y-y2)/(double)k; R2=(double)(y-y1)/(double)k; } else { L2=(double)(y-y1)/(double)k; R2=(double)(y-y2)/(double)k; } double L,R; L=max(L1,L2); R=min(R1,R2); long long ans=(long long)(floor(R+1e-6)-ceil(L-1e-6)+1); //printf("ans=%d ",ans); if(ans>0) printf("%lld ",ans); else printf("0 "); } return 0; }