• LightOJ 1341(Aladdin and the Flying Carpet )算术基本定理


    It's said that Aladdin had to solve seven mysteries before getting the Magical Lamp which summons a powerful Genie. Here we are concerned about the first mystery.

    Aladdin was about to enter to a magical cave, led by the evil sorcerer who disguised himself as Aladdin's uncle, found a strange magical flying carpet at the entrance. There were some strange creatures guarding the entrance of the cave. Aladdin could run, but he knew that there was a high chance of getting caught. So, he decided to use the magical flying carpet. The carpet was rectangular shaped, but not square shaped. Aladdin took the carpet and with the help of it he passed the entrance.

    Now you are given the area of the carpet and the length of the minimum possible side of the carpet, your task is to find how many types of carpets are possible. For example, the area of the carpet 12, and the minimum possible side of the carpet is 2, then there can be two types of carpets and their sides are: {2, 6} and {3, 4}.


    Input

    Input starts with an integer T (≤ 4000), denoting the number of test cases.

    Each case starts with a line containing two integers: a b (1 ≤ b ≤ a ≤ 1012) where a denotes the area of the carpet and b denotes the minimum possible side of the carpet.

    Output

    For each case, print the case number and the number of possible carpets.

    Sample Input

    2

    10 2

    12 2

    Sample Output

    Case 1: 1

    Case 2: 2

    分析:给出整数a和b,求区间[b, a] 内的 a 的约数对的个数,

    满足c*d == a 且 c,d>=b且c!=d。a 的约数对(比如[2, 3] 与 [3, 2] 为同一对)。

    PS:

    先素数打表一下,然后再运用算术基本定理中的(1)

    即可求出正因数的个数,然后再除以2,便是对数,

    最后再暴力求解出[1,b]中 a 的正因数个数,相减便是答案!

    #include<cstdio>
    #include<cmath>
    bool a[1000090];
    int p[100090],cnt=1;
    void prime()
    {
        for(int i=4;i<1000001;i+=2) a[i]=1;
        p[0]=2;
        for(int i=3;i<1000001;i++)
        {
            if(!a[i])
            {
                p[cnt++]=i;
                for(int j=i+i;j<1000001;j+=i)
                a[j]=1;
            }
        }
    }
    
    long long f(long long N)
    {
        long long ans=1;
        long long K=sqrt(N*1.0);
        for(int i=0;p[i]<=N&&i<cnt;i++)
        {
            int temp=1;
            while(N%p[i]==0)
            {
                temp++;
                N/=p[i];
            }
            ans*=temp;
        }
        if(N>1) ans*=2;//即N未除尽
        return ans/2;
    }
    
    int main()
    {
        int T,cas=1;
        long long N,b;
        scanf("%d",&T);
        prime();
        while(T--)
        {
            scanf("%lld%lld",&N,&b);
            if(b*b>N) printf("Case %d: 0
    ",cas++);
            else
            {
                int res=0;
                for(int i=1;i<b;i++)//1~b
                    if(N%i==0) res++;
                printf("Case %d: %lld
    ",cas++,f(N)-res);
            }
        }
        return 0;
    }
    View Code
  • 相关阅读:
    今天写一篇随想,也当是回顾过去,展望未来吧。
    推荐 Word、EXCEL必备工具箱
    elasticsearch Routing 路由详解
    Python学习之字典
    ES 分片和副本数 调整及数据写入、重建索引调优
    fastJson JSON.parseObject()丢失字符串原本顺序
    Python 列表(详)
    pycharm常用快捷键
    Python学习笔记二(列表)
    python学习笔记二
  • 原文地址:https://www.cnblogs.com/ACRykl/p/8605684.html
Copyright © 2020-2023  润新知