Harmonic Number
In mathematics, the nth harmonic number is the sum of the reciprocals of the first n natural numbers:
In this problem, you are given n, you have to find Hn.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 108).
OutputFor each case, print the case number and the nth harmonic number. Errors less than 10-8 will be ignored.
Sample Input12
1
2
3
4
5
6
7
8
9
90000000
99999999
100000000
Sample OutputCase 1: 1
Case 2: 1.5
Case 3: 1.8333333333
Case 4: 2.0833333333
Case 5: 2.2833333333
Case 6: 2.450
Case 7: 2.5928571429
Case 8: 2.7178571429
Case 9: 2.8289682540
Case 10: 18.8925358988
Case 11: 18.9978964039
Case 12: 18.9978964139
分析:调和级数至今没有一个完全正确的公式,但欧拉给出过一个近似公式:(n很大时)
f(n)≈ln(n)+C+1/2*n
欧拉常数值:C≈0.57721566490153286060651209
#include<cstdio> #include<cmath> double C=0.57721566490153286060651209; double a[120000]; int main() { int T,n,cas=1; a[1]=1; for(int i=2;i<120000;i++) a[i]=a[i-1]+1.0/i; scanf("%d",&T); while(T--) { scanf("%d",&n); printf("Case %d: ",cas++); if(n<120000) printf("%.10lf ",a[n]); else { printf("%.10lf ",log(n)+C+1.0/(2*n)); } } return 0; }